Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

: The melt-spinning process has seen limited application in the pharmaceutical industry. However, nano- and microfibrous structures show significant potential for novel drug delivery systems, due to their high specific surface area. To facilitate broader adoption in pharmaceutical technology, critical parameters influencing fiber quality and yield must be investigated. In this study, we aimed to develop an isomalt-based microfibrous carrier system for active pharmaceutical ingredients. : The effects of different isomalt compositions-specifically, varying ratios of GPS (6--α-d-glucopyranosyl-d-sorbitol) and GPM (1--α-d-glucopyranosyl-d-mannitol)-as well as key process parameters, were systematically investigated to optimize fiber formation. The prepared fibers underwent different treatments. Morphological changes were monitored with a microscope, and microstructural changes were studied using a differential scanning calorimeter and X-ray diffractometer. The macroscopic behavior of the fibers was evaluated by image analysis under monitored conditions. Statistical analysis was used to determine the optimal setting to produce isomalt-based fibers. We found that storage over ethanol vapor has a positive effect on the stability of the fibers. We successfully prepared ibuprofen sodium-containing fibers that remained stable after alcohol treatment and enabled drug release within 15 s. It was found that the applied GPS:GPM isomalt ratio significantly influenced fiber formation and that storage over ethanol positively influenced the processability and stability of the fibrous structure. An isomalt-based microfibrous system with advantageous physicochemical and structural properties was successfully developed as a potential drug carrier. The system is also resistant to the destructive effects of ambient humidity, enabling preparation of suitable dosage forms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12389455PMC
http://dx.doi.org/10.3390/pharmaceutics17081063DOI Listing

Publication Analysis

Top Keywords

drug carrier
8
isomalt-based microfibrous
8
carrier system
8
fiber formation
8
storage ethanol
8
fibers
5
fabrication evaluation
4
isomalt-based
4
evaluation isomalt-based
4
isomalt-based microfibers
4

Similar Publications

Schizophrenia is a persistent and incapacitating neuropsychiatric condition that presents considerable obstacles regarding pharmacological administration and therapeutic effectiveness. Lipidic nanocarriers, including Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs), have emerged as effective drug delivery vehicles for enhancing the bioavailability, stability, and controlled release of antipsychotic medicines. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have several benefits, such as improved drug loading capacity, less systemic adverse effects, and superior efficacy in traversing the blood-brain barrier compared to conventional formulations.

View Article and Find Full Text PDF

Ultra-sensitive pH-responsive drug delivery system designed to operate within the slightly acidic microenvironment of tumors are highly desired for hydrogel applications in cancer therapy. In this study, 4-Formylbenzoic acid modified polyvinyl alcohol (PVA-FBA, PF) was synthesized and utilized as a carrier for encapsulating the anticancer drug Doxorubicin (Dox). This was subsequently crosslinked with polyethylenimine (PEI) via benzoic-imine bond to form drug-loaded PVA-FBA/PEI hydrogel (D-PFP).

View Article and Find Full Text PDF

Integrative profiling of lung cancer biomarkers EGFR, ALK, KRAS, and PD-1 with emphasis on nanomaterials-assisted immunomodulation and targeted therapy.

Front Immunol

September 2025

Department of Thoracic Surgery, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China.

Background: Lung cancer remains the leading cause of cancer-related mortality globally, primarily due to late-stage diagnosis, molecular heterogeneity, and therapy resistance. Key biomarkers such as EGFR, ALK, KRAS, and PD-1 have revolutionized precision oncology; however, comprehensive structural and clinical validation of these targets is crucial to enhance therapeutic efficacy.

Methods: Protein sequences for EGFR, ALK, KRAS, and PD-1 were retrieved from UniProt and modeled using SWISS-MODEL to generate high-confidence 3D structures.

View Article and Find Full Text PDF

Sustained Mg/Sr ion delivery from injectable silk fibroin hydrogels drives SCAP osteogenic differentiation.

iScience

September 2025

Department of Geriatric Dentistry, NMPA Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Biomaterials for Oral Disease, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China.

This study highlights the biomedical relevance of injectable TS (tannic acid-silk fibroin)-Mg/Sr hydrogels in alveolar bone repair, particularly their prospective role as carriers for stem cells from the apical papilla (SCAPs) in tissue regeneration. By utilizing self-assembling silk material, noted for its favorable handling properties, we present a useful approach for single-wall bone defects, such as bone fenestration and fractures in the oral cavity. Furthermore, our findings regarding the involvement of the TRPM7 ion channel indicate a possible regulatory pathway for improving alveolar bone defect repair.

View Article and Find Full Text PDF

Background: Candidiasis, predominantly caused by , poses a significant global health challenge, especially in tropical regions. Nystatin is a potent antifungal agent that is hindered by its low solubility and permeability, limiting its clinical efficacy.

Methods: This study aimed to investigate the potential of a layer-by-layer (LBL) coating system, employing chitosan and alginate, to improve the stability, entrapment efficiency (%EE), and antifungal efficacy of nystatin-loaded liposomes against Candida albicans.

View Article and Find Full Text PDF