Reconstruction and Microstructure Characterization of Tailings Materials with Varying Particle Sizes.

Materials (Basel)

State Key Laboratory of Geotechnical Mechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the continuous increase in mining activities, effective tailings management has become a critical concern in geotechnical and environmental engineering. This study systematically investigates the microstructural characteristics and 3D reconstruction behavior of copper tailings with different particle sizes using X-ray computed tomography (micro-CT), digital image processing, and 3D modeling techniques. Two particle size groups (fine: 0.075-0.15 mm; coarse: 0.15-0.3 mm) were analyzed to quantify differences in particle morphology, pore structure, and orientation anisotropy. Binary images and reconstructed models revealed that coarse particles tend to have more irregular and angular shapes, while fine particles exhibit more complex pore networks with higher fractal dimensions. The apparent porosity derived from CT data was consistently lower than laboratory measurements, likely due to internal agglomeration effects. Orientation analysis indicated that particle alignment and anisotropy vary systematically with section angle relative to the principal stress direction. These findings offer new insights into the particle-scale mechanisms affecting the packing, porosity, and anisotropy of tailings, providing a scientific basis for enhancing the structural evaluation and sustainable management of tailings storage facilities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387323PMC
http://dx.doi.org/10.3390/ma18163895DOI Listing

Publication Analysis

Top Keywords

particle sizes
8
tailings
5
particle
5
reconstruction microstructure
4
microstructure characterization
4
characterization tailings
4
tailings materials
4
materials varying
4
varying particle
4
sizes continuous
4

Similar Publications

Background: Kaempferol (KAE), a bioactive flavonoid, has limited solubility and stability in water. Zein-gum arabic (GA) nanoparticles (NPs) are promising carriers for KAE, but the influence of preparation methods on their structure and properties remains unclear. This study investigated the effect of preparation method on the structure and properties of KAE-loaded zein-GA NPs.

View Article and Find Full Text PDF

Background: Candidiasis, predominantly caused by , poses a significant global health challenge, especially in tropical regions. Nystatin is a potent antifungal agent that is hindered by its low solubility and permeability, limiting its clinical efficacy.

Methods: This study aimed to investigate the potential of a layer-by-layer (LBL) coating system, employing chitosan and alginate, to improve the stability, entrapment efficiency (%EE), and antifungal efficacy of nystatin-loaded liposomes against Candida albicans.

View Article and Find Full Text PDF

Ulcerative colitis (UC) is a chronic inflammatory bowel disease, the incidence of which continues to rise globally, and existing therapeutic options are limited by low drug bioavailability and systemic side effects. In this study, we systematically investigated the challenges of the special gastrointestinal environment of UC patients for oral drug delivery, such as extreme pH, degradation by digestive enzymes, metabolism of intestinal flora and obstruction of the intestinal mucosal barrier, and summarized the potential of plant-derived Exosome-like Nanovesicles (PELNs) as a novel delivery system. PELNs are produced by plant cells and mainly consist of proteins, RNA, lipids and plant active molecules.

View Article and Find Full Text PDF

This study investigated the effect of refining time on the physicochemical and functional properties of anhydrous cream prepared from a palm-sunflower oil blend using a stirred ball mill. Refining was performed for 0-300 min, and its impact on particle size distribution, rheology, oxidative stability, and thermal behavior was assessed. The target particle fineness (D90 ≤ 30 μm) was achieved at approximately 180 min, with negligible reduction thereafter.

View Article and Find Full Text PDF

Introduction: Laboratory-acquired infections (LAIs) from exposure to infectious biological pathogens during laboratory operations present ongoing challenges despite modern biosafety measures. Notably, LAIs attributed to inhaling infectious aerosols continue to occur.

Objective: This review aims to enhance understanding of the risks of LAIs associated with infectious aerosols.

View Article and Find Full Text PDF