A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

An Integrated Approach Using GA-XGBoost and GMM-RegGAN for Marine Corrosion Prediction Under Small Sample Size. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Corrosion is the predominant failure mechanism in marine steel, and accurate corrosion prediction is essential for effective maintenance and protection strategies. However, the limited availability of corrosion datasets poses significant challenges to the accuracy and generalization of prediction models. This study introduces a novel integrated model designed for predicting marine corrosion under small sample sizes. The model utilizes dynamic marine environmental factors and material properties as inputs, with the corrosion rate as the output. Initially, a genetic algorithm (GA)-optimized machine learning framework is employed to derive the optimal GA-XGBoost model. To further enhance model performance, a virtual sample generation method combining Gaussian Mixture Model and Regression Generative Adversarial Network (GMM-RegGAN) is proposed. By incorporating these generated virtual samples into the base model, the prediction accuracy is further improved. The proposed framework is validated using corrosion datasets from six types of marine steel. Results demonstrate that GA optimization substantially improves both the performance and stability of the model. Virtual sample generation further enhances predictive performance, with reductions of 14.94% in RMSE, 15.55% in MAE, and 14.04% in MAPE. The results indicate that the proposed method offers a robust and effective framework for corrosion prediction in scenarios with limited sample data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387397PMC
http://dx.doi.org/10.3390/ma18163760DOI Listing

Publication Analysis

Top Keywords

corrosion prediction
12
corrosion
8
marine corrosion
8
small sample
8
marine steel
8
corrosion datasets
8
virtual sample
8
sample generation
8
model
7
marine
5

Similar Publications