98%
921
2 minutes
20
Blast-furnace staves serve as critical protective components in ironmaking, requiring synergistic optimization of slag-coating behavior and self-protection capability to extend furnace lifespan and reduce energy consumption. Traditional integer-order heat transfer models, constrained by assumptions of homogeneous materials and instantaneous heat conduction, fail to accurately capture the cross-scale thermal memory effects and non-local diffusion characteristics in multiphase heterogeneous blast-furnace systems, leading to substantial inaccuracies in predicting dynamic slag-layer evolution. This review synthesizes recent advancements across three interlinked dimensions: first, analyzing design principles of zonal staves and how refractory material properties influence slag-layer formation, proposing a "high thermal conductivity-low thermal expansion" material matching strategy to mitigate thermal stress cracks through optimized synergy; second, developing a mechanistic model by introducing the Caputo fractional derivative to construct a non-Fourier heat-transfer framework (i.e., a heat-transfer model that accounts for thermal memory effects and non-local diffusion, beyond the instantaneous heat conduction assumption of Fourier's law), which effectively describes fractal heat flow in micro-porous structures and interfacial thermal relaxation, addressing limitations of conventional models; and finally, integrating industrial case studies to validate the improved prediction accuracy of the fractional-order model and exploring collaborative optimization of cooling intensity and slag-layer thickness, with prospects for multiscale interfacial regulation technologies in long-life, low-carbon stave designs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387889 | PMC |
http://dx.doi.org/10.3390/ma18163727 | DOI Listing |
Materials (Basel)
August 2025
College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China.
Blast-furnace staves serve as critical protective components in ironmaking, requiring synergistic optimization of slag-coating behavior and self-protection capability to extend furnace lifespan and reduce energy consumption. Traditional integer-order heat transfer models, constrained by assumptions of homogeneous materials and instantaneous heat conduction, fail to accurately capture the cross-scale thermal memory effects and non-local diffusion characteristics in multiphase heterogeneous blast-furnace systems, leading to substantial inaccuracies in predicting dynamic slag-layer evolution. This review synthesizes recent advancements across three interlinked dimensions: first, analyzing design principles of zonal staves and how refractory material properties influence slag-layer formation, proposing a "high thermal conductivity-low thermal expansion" material matching strategy to mitigate thermal stress cracks through optimized synergy; second, developing a mechanistic model by introducing the Caputo fractional derivative to construct a non-Fourier heat-transfer framework (i.
View Article and Find Full Text PDF