Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A facile and cost-effective sol-gel method for the synthesis of uniformly porous alumina (AlO) was developed using stable CTAB/hexanol/water microemulsions as soft templates. The phase behavior of the ternary system was investigated to identify compositions that form kinetically stable microemulsions, with an optimal ratio of 7.5 wt.% CTAB, 5 wt.% hexanol, and 87.5 wt.% water exhibiting minimal droplet size variation over one week. Gelation was induced by partial neutralization to pH 4.2 with ammonium carbonate, promoting the formation of polynuclear Al species and enabling the uniform entrapment of hexanol droplets. Lyophilization preserved the porous network, and calcination at 500 °C yielded η-AlO with a large specific surface area (~225 m·g) and a narrow mesopore size distribution centered around 100 nm, consistent with the original droplet size. Mercury porosimetry and SEM analyses confirmed a highly porous, low-density material (0.75 g·cm) with an interconnected pore morphology. This scalable synthesis method, supported by the high kinetic stability of the microemulsion, provides sufficient processing time and eliminates the need for post-synthesis purification. It shows strong potential for producing advanced alumina materials for use in energy storage, catalysis, and sensor applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12385746PMC
http://dx.doi.org/10.3390/gels11080638DOI Listing

Publication Analysis

Top Keywords

sol-gel method
8
droplet size
8
preparation uniform-pore
4
uniform-pore ceramics
4
ceramics highly
4
highly stable
4
stable emulsions
4
emulsions sol-gel
4
method facile
4
facile cost-effective
4

Similar Publications

The iron nickel magnesium tetra-oxide (FeNiMgO) nanocomposites (NCs) first reported in this article were synthesized using the sol-gel method. For investigation using powder X-ray diffraction (PXRD), the presence of a cubic structure is confirmed. In Raman spectroscopy, the vibrational modes are investigated.

View Article and Find Full Text PDF

Bismuth ferrite (BiFeO), a perovskite oxide with both ferroelectric and antiferromagnetic properties, has emerged as a promising material for environmental cleanup due to its piezo-photocatalytic activity. The material's ability to degrade organic pollutants, such as azo dyes, under both light irradiation and mechanical stress (ultrasonic waves) offers a dual-action mechanism for efficient wastewater treatment. In this work, we explore the synthesis of BiFeO nanoparticles a simple sol-gel method, followed by characterization of their structural, magnetic, and photocatalytic properties.

View Article and Find Full Text PDF

Tacrolimus belongs to the BCS class-II drug family and exhibits poor water solubility, which leads to poor bioavailability. Furthermore, since tacrolimus is an immunosuppressant, it is essential to maintain its therapeutic concentration for a greater period of time to confirm its effectiveness against transplant rejection. Therefore, to achieve the objective of the sustained release of the drug with a suitable amount of entrapment efficiency, pH-sensitive tacrolimus-loaded superabsorbent hydrogels using chitosan have been prepared.

View Article and Find Full Text PDF

Hybrid coatings composed of crystalline monetite (CaHPO) and kefir-derived Dextran were synthesized on Ti6Al4V substrates using a low-temperature sol-gel-assisted route (≤80 °C), enabling biopolymer integration without thermal degradation. X-ray diffraction (XRD) confirmed the formation of triclinic monetite nanocrystals (∼152 nm), while Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) analyses verified the uniform incorporation of Dextran, particularly in the 4 wt % formulation, which yielded compact, homogeneous surfaces. Electrochemical evaluations in Fusayama artificial saliva revealed a substantial enhancement in corrosion resistance, with the open-circuit potential shifting from -0.

View Article and Find Full Text PDF

Enhancement of the performance of lithium-ion batteries is a critical strategy for addressing the challenges associated with cost and raw materials. By doping boron (B), aluminum (Al), and aluminum/boron (Al/B) utilizing the sol-gel method, we demonstrate a substantial improvement in the cycling performance of Ni-rich lithium nickel manganese cobalt oxide (NMC) as an electrode. While the initial specific capacitance of the doped samples may be lower than that of the pristine NMC, these samples demonstrate a notable increase in specific capacitance during subsequent cycles, reaching a peak around the 10 cycle and nearing the highest specific capacitance observed in NMC cathodes.

View Article and Find Full Text PDF