Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

(GPS) is a conditional pathogen that colonizes the upper respiratory tract in pigs and causes Glässer's disease, resulting in high morbidity and mortality in piglets. GPS infection increases the vascular endothelial permeability, but the mechanism has not been fully elucidated. Luteolin (Lut) is a naturally occurring flavonoid found in plants such as vegetables, herbs, and fruits, but its potential to treat the increased vascular endothelial permeability caused by GPS infection has not been evaluated. This study revealed that GPS infection induces increased vascular endothelial permeability in porcine iliac artery endothelial cells (PIECs) by increasing the gene expressions of tumor necrosis factor (TNF), interleukin 6 (IL-6), IL-8, and IL-1β, and by regulating F-actin cytoskeleton reorganization. Mechanistically, GPS infection or Cluster of differentiation 44 (CD44) overexpression significantly increased the expressions of vascular-endothelial-permeability-related proteins (CD44; vascular endothelial growth factor (VEGFA); matrixmetalloProteinase-3 (MMP-3); MMP-9; and SRC proto-oncogene, non-receptor tyrosine kinase (c-Src)) and increased the vascular endothelial permeability; these changes were alleviated by a Lut treatment or CD44 silencing in the PIECs. This study comprehensively illustrates the potential targets and molecular mechanism of Lut in alleviating the GPS-induced increase in vascular endothelial permeability. The CD44 pathway and Lut may be an effective target and antibiotic alternative, respectively, to prevent the increased vascular endothelial permeability caused by GPS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383133PMC
http://dx.doi.org/10.3390/antibiotics14080824DOI Listing

Publication Analysis

Top Keywords

vascular endothelial
32
endothelial permeability
24
gps infection
16
increased vascular
16
endothelial
9
vascular
8
endothelial cells
8
permeability caused
8
caused gps
8
gps
6

Similar Publications

Cerebrovascular protective functions of amyloid precursor protein: Progress and therapeutic prospects.

Pharmacol Ther

September 2025

Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55902, USA; Department of Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA.

Under physiological conditions, amyloid precursor protein (APP) is critically important for normal brain development, neurogenesis, neuronal survival, and synaptic signaling. Dyshomeostasis of APP increases deposition and accumulation of amyloid β (Aβ) in the brain parenchyma and cerebral blood vessels thereby leading to development of Alzheimer's disease and cerebral amyloid angiopathy. In this review, we critically examine existing literature supporting the concept that endothelial APP performs important vascular protective functions in the brain.

View Article and Find Full Text PDF

Endothelial Dysfunction and Therapeutic Advances in Chronic Kidney Disease.

Diabetes Metab Res Rev

September 2025

Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China.

Chronic kidney disease (CKD) substantially increases cardiovascular risk, with endothelial dysfunction as its central pathological mechanism. This review summarises the molecular regulatory mechanisms underlying endothelial dysfunction in CKD and highlights recent advances in treatment strategies. The pathophysiology of endothelial injuries involves a complex network of multiple factors and mechanisms, including oxidative stress, inflammation, glycocalyx damage, ischaemia, hypoxia, cellular senescence and endothelial-mesenchymal transition (EndMT).

View Article and Find Full Text PDF

Protocol for live-cell calcium imaging of human lung microvascular endothelial vessel-on-a-chip model.

STAR Protoc

September 2025

Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Systems Biology and Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Department of Pulmonary Medicine, Cincinnati Children's Hospital Medical C

Calcium signaling is crucial for endothelial cell homeostasis. Alterations in intracellular calcium levels due to shear stress are linked to vascular dysfunction and diseases. Here, we present a protocol to perform live calcium imaging by using a live calcium indicator on human lung endothelial cells subjected to shear stress in a commercially available microfluidic device (Ibidi Luer VI).

View Article and Find Full Text PDF

Comparison of clinical features between patients with bone and soft tissue angiosarcomas.

J Orthop Sci

September 2025

Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-Ku, Sapporo, Hokkaido 060-8638, Japan. Electronic address:

Background: Angiosarcoma is a rare and aggressive malignancy arising from vascular endothelial cells, with distinct subtypes originating in bone (AS-B) and soft tissue (AS-ST). While these subtypes share pathological similarities, differences in clinical outcomes remain unclear due to limited data. This study aimed to compare the clinical features, treatment strategies, and survival outcomes between AS-B and AS-ST using the Surveillance, Epidemiology, and End Results (SEER) database.

View Article and Find Full Text PDF

Role of hydrogen sulfide in catalyzing the formation of NO-ferroheme.

Nitric Oxide

September 2025

Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA; Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA. Electronic address:

We recently demonstrated a rapid reaction between labile ferric heme and nitric oxide (NO) in the presence of reduced glutathione (GSH) or other small thiols in a process called thiol-catalyzed reductive nitrosylation, yielding a novel signaling molecule, labile nitrosyl ferrous heme (NO-ferroheme), which we and others have shown can regulate vasodilation and platelet homeostasis. Red blood cells (RBCs) contain high concentrations of GSH, and NO can be generated in the RBC via nitrite reduction and/or RBC endothelial nitric oxide synthase (eNOS) so that NO-ferroheme could, in principle, be formed in the RBC. NO-ferroheme may also form in other cells and compartments, including in plasma, where another small and reactive thiol species, hydrogen sulfide (HS/HS), is also present and may catalyze NO-ferroheme formation akin to GSH.

View Article and Find Full Text PDF