Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Early diagnosis of lung cancer is crucial for improving patient prognosis. In this study, we developed a diagnostic model for lung cancer based on serum proteomic data from the GSE168198 dataset using four machine learning algorithms (nnet, glmnet, svm, and XGBoost). The model's performance was validated on datasets that included normal controls, disease controls, and lung cancer data containing both. Furthermore, the model's diagnostic capability was further validated on an independent external dataset. Our analysis identified SLC16A4 as a key protein in the model, which was significantly downregulated in lung cancer serum samples compared to normal controls. The expression of SLC16A4 was closely associated with clinical pathological features such as gender, tumor stage, lymph node metastasis, and smoking history. Functional assays revealed that overexpression of SLC16A4 significantly inhibited lung cancer cell proliferation and induced cellular senescence, suggesting its potential role in lung cancer development. Additionally, correlation analyses showed that expression was linked to immune cell infiltration and the expression of immune checkpoint genes, indicating its potential involvement in immune escape mechanisms. Based on multi-omics data from the TCGA database, we further discovered that the low expression of in lung cancer may be regulated by DNA copy number variations and DNA methylation. In conclusion, this study not only established an efficient diagnostic model for lung cancer but also identified SLC16A4 as a promising biomarker with potential applications in early diagnosis and immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383841PMC
http://dx.doi.org/10.3390/biom15081081DOI Listing

Publication Analysis

Top Keywords

lung cancer
36
diagnostic model
12
model lung
12
lung
9
cancer
9
machine learning
8
learning algorithms
8
early diagnosis
8
normal controls
8
identified slc16a4
8

Similar Publications

Whole genome sequence analysis of low-density lipoprotein cholesterol across 246 K individuals.

Genome Biol

September 2025

Center for Genomic Medicine, Cardiovascular Research Center, , Massachusetts General Hospital Simches Research Center, 185 Cambridge Street, CPZN 5.238,, Boston, MA, 02114, USA.

Background: Rare genetic variation provided by whole genome sequence datasets has been relatively less explored for its contributions to human traits. Meta-analysis of sequencing data offers advantages by integrating larger sample sizes from diverse cohorts, thereby increasing the likelihood of discovering novel insights into complex traits. Furthermore, emerging methods in genome-wide rare variant association testing further improve power and interpretability.

View Article and Find Full Text PDF

Patient-reported outcomes after lobectomy vs. segmentectomy for early-stage non-small cell lung cancer.

Surg Endosc

September 2025

Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

Background: Surgical resection is the cornerstone for early-stage non-small cell lung cancer (NSCLC), with lobectomy historically standard. Evolving techniques have spurred debate comparing lobectomy and segmentectomy. This study analyzed early postoperative patient-reported symptoms and functional status in patients with early NSCLC undergoing either procedure.

View Article and Find Full Text PDF

Radon (Rn) is a naturally occurring radioactive gas produced by the decay of uranium-bearing minerals in rocks and soils. Long-term exposure to elevated radon levels in drinking water is associated with an increased risk of stomach and lung cancers. This study aims to assess the concentration of radon in groundwater and evaluate its potential health risks in six cancer-affected districts, i.

View Article and Find Full Text PDF

The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.

View Article and Find Full Text PDF

Lung adenocarcinoma (LUAD) associated with usual interstitial pneumonia (UIP) harbours distinct features compared to lung adenocarcinoma without UIP. Therefore, we aimed to characterise the tumour microenvironment of LUAD with UIP by focusing on cancer-associated fibroblasts (CAFs) and stromal composition. Immunohistochemistry was performed on 32 LUAD samples (16 each with and without UIP) to evaluate CAF marker expression and lymphocyte infiltration.

View Article and Find Full Text PDF