Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Prostate cancer (PCa) is the most common malignancy in men. Precise grading is crucial for the effective treatment approaches of PCa. Machine learning (ML) applied to biparametric Magnetic Resonance Imaging (bpMRI) radiomics holds promise for improving PCa diagnosis and prognosis. This study investigated the efficiency of seven ML models to diagnose the different PCa grades, changing the input variables. Our studied sample comprised 214 men who underwent bpMRI in different imaging centers. Seven ML algorithms were compared using radiomic features extracted from T2-weighted (T2W) and diffusion-weighted (DWI) MRI, with and without the inclusion of Prostate-Specific Antigen (PSA) values. The performance of the models was evaluated using the receiver operating characteristic curve analysis. The models' performance was strongly dependent on the input parameters. Radiomic features derived from T2WI and DWI, whether used independently or in combination, demonstrated limited clinical utility, with AUC values ranging from 0.703 to 0.807. However, incorporating the PSA index significantly improved the models' efficiency, regardless of lesion location or degree of malignancy, resulting in AUC values ranging from 0.784 to 1.00. There is evidence that ML methods, in combination with radiomic analysis, can contribute to solving differential diagnostic problems of prostate cancers. Also, optimization of the analysis method is critical, according to the results of our study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387180PMC
http://dx.doi.org/10.3390/jimaging11080250DOI Listing

Publication Analysis

Top Keywords

radiomic analysis
8
machine learning
8
prostate cancer
8
radiomic features
8
auc values
8
values ranging
8
role radiomic
4
analysis
4
analysis machine
4
learning models
4

Similar Publications

Rationale And Objectives: The diagnostic value of traditional imaging methods and radiomics in predicting macrotrabecular-massive hepatocellular carcinoma (MTM HCC) is yet to be ascertained. Therefore, this meta-analysis aims to compare the diagnostic performance of radiomics and conventional imaging techniques for MTM HCC.

Materials And Methods: Comprehensive publications were searched in PubMed, Embase, Web of Science, and Cochrane Library up to 28 February 2025.

View Article and Find Full Text PDF

Rationale And Objectives: Double expression lymphoma (DEL) is an independent high-risk prognostic factor for primary CNS lymphoma (PCNSL), and its diagnosis currently relies on invasive methods. This study first integrates radiomics and habitat radiomics features to enhance preoperative DEL status prediction models via intratumoral heterogeneity analysis.

Materials And Methods: Clinical, pathological, and MRI imaging data of 139 PCNSL patients from two independent centers were collected.

View Article and Find Full Text PDF

Radiomics nomogram from multiparametric magnetic resonance imaging for preoperative prediction of substantial lymphovascular space invasion in endometrial cancer.

Abdom Radiol (NY)

September 2025

Department of Radiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.

Background: We aimed to develop and validate a radiomics-based machine learning nomogram using multiparametric magnetic resonance imaging to preoperatively predict substantial lymphovascular space invasion in patients with endometrial cancer.

Methods: This retrospective dual-center study included patients with histologically confirmed endometrial cancer who underwent preoperative magnetic resonance imaging (MRI). The patients were divided into training and test sets.

View Article and Find Full Text PDF

Objectives: In non-small cell lung cancer (NSCLC), non-invasive alternatives to biopsy-dependent driver mutation analysis are needed. We reviewed the effectiveness of radiomics alone or with clinical data and assessed the performance of artificial intelligence (AI) models in predicting oncogene mutation status.

Materials And Methods: A PRISMA-compliant literature review for studies predicting oncogene mutation status in NSCLC patients using radiomics was conducted by a multidisciplinary team.

View Article and Find Full Text PDF

Purpose: To predict metastasis-free survival (MFS) for patients with prostate adenocarcinoma (PCa) treated with androgen deprivation therapy (ADT) and external radiotherapy using clinical factors and radiomics extracted from primary tumor and node volumes in pre-treatment PSMA PET/CT scans.

Materials/methods: Our cohort includes 134 PCa patients (nodal involvement in 28 patients). Gross tumor volumes of primary tumor (GTVp) and nodes (GTVn) on CT and PET scans were segmented.

View Article and Find Full Text PDF