98%
921
2 minutes
20
This study aimed to establish a transgenic mouse model expressing nucleus-localized human α-synuclein (α-syn) to investigate its impact on the central nervous system and behavior and the underlying mechanisms involved. A nuclear localization sequence (NLS) was added to the end of the human SNCA (hSNCA) gene. Subsequently, an empty vector and a mammalian lentiviral vector of the hSNCA-NLS were constructed. Transgenic mice were generated via microinjection, with genotyping and protein expression confirmed by PCR and western blotting. Only male mice were used in subsequent behavioral and molecular experiments. Immunofluorescence identified the colocalization of human α-syn with the cell nucleus in mouse brain tissues. Behavioral changes in transgenic mice were assessed using open field, rotarod, and O-maze tests. qPCR and Western blotting detected expression levels of genes and proteins related to inflammation, endoplasmic reticulum stress (ERS), and apoptosis. Bulk RNA sequencing was used to screen for differentially expressed genes and signaling pathways. We successfully constructed a transgenic mouse model expressing human α-syn. Human α-syn was widely expressed in the heart, liver, spleen, kidneys, and brain of the mice, with distinct nuclear localization observed. Behavioral assessments demonstrated that, by 2 months of age, the mice exhibited motor dysfunction alongside astrocyte proliferation and neuroinflammation. At 6 months, the elevated expression of ERS-related genes (ATF6, PERK, and IRE1) and activation of the PERK-Beclin1-LC3II pathway indicated progressive ERS. By 9 months, apoptotic events had occurred, accompanied by significant anxiety-like behaviors. Bulk RNA sequencing further identified key differentially expressed genes, including IL-1α, TNF, PERK, BECLIN, GABA, IL-6α, P53, LC3II, NOS, and SPAG, suggesting their involvement in the observed pathological and behavioral phenotypes. The nuclear localization human α-syn transgenic mice were successfully established. These findings demonstrate that nucleus-localized α-syn induces early motor deficits, which are likely mediated by neuroinflammation, whereas later anxiety-like behaviors may result from ERS-induced apoptosis. This model provides a valuable tool for elucidating the role of nuclear α-syn in Parkinson's disease and supports further mechanistic and therapeutic research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12385466 | PMC |
http://dx.doi.org/10.3390/diseases13080261 | DOI Listing |
Eur J Nucl Med Mol Imaging
September 2025
Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
Purpose: Amino acid PET with [F]-fluoroethylthyrosine ([F]FET-PET) is frequently utilized in gliomas. Most studies on prognostication based on amino acid PET comprise mixed cohorts of brain tumors with low- and high-grade features. The objective of this study was to assess the potential prognostic value of [F]FET-PET-based markers in the group of grade 2 adult-type diffuse gliomas, as defined by the WHO CNS 2021 classification.
View Article and Find Full Text PDFEMBO J
September 2025
Department of Biology, University of Crete, Vassilika Vouton, Heraklion, 70013, Greece.
In the presence of chromatin bridges in cytokinesis, human cells retain actin-rich structures (actin patches) at the base of the intercellular canal to prevent chromosome breakage. Here, we show that daughter nuclei connected by chromatin bridges are under mechanical tension that requires interaction of the nuclear membrane Sun1/2-Nesprin-2 Linker of Nucleoskeleton and Cytoskeleton (LINC) complex with the actin cytoskeleton, and an intact nuclear lamina. This nuclear tension promotes accumulation of Sun1/2-Nesprin-2 proteins at the base of chromatin bridges and local enrichment of the RhoA-activator PDZ RhoGEF through PDZ-binding to cytoplasmic Nesprin-2 spectrin repeats.
View Article and Find Full Text PDFEMBO J
September 2025
Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
During a critical period of postnatal brain development, neural circuits undergo significant refinement coincident with widespread alternative splicing of hundreds of genes, which undergo altered splice site selection for the generation of isoforms essential for synaptic plasticity. Here, we reveal that neuronal activity-dependent phosphorylation of paxillin at its serine 119 (p-paxillin) acts as a molecular switch in the nucleus for the control of alternative splicing during this period. We show that following NMDA receptor activation, nuclear p-paxillin is recruited to nuclear speckles, where it interacts with splicing factors, such as U2AFs.
View Article and Find Full Text PDFImmunol Cell Biol
September 2025
Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Sangareddy, Telangana, India.
The immune system uses a variety of DNA sensors, including endo-lysosomal Toll-like receptors 9 (TLR9) and cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). These sensors activate immune responses by inducing the production of a variety of cytokines, including type I interferons (IFN). Activation of cGAS requires DNA-cGAS interaction.
View Article and Find Full Text PDFJ Nucl Med Technol
September 2025
Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and the General University Hospital in Prague, Prague, Czech Republic;
The aim of the study was to validate a new method for semiautomatic subtraction of [Tc]Tc-sestamibi and [Tc]NaTcO SPECT 3-dimensional datasets using principal component analysis (PCA) against the results of parathyroid surgery and to compare its performance with an interactive method for visual comparison of images. We also sought to identify factors that affect the accuracy of lesion detection using the two methods. Scintigraphic data from [Tc]Tc-sestamibi and [Tc]NaTcO SPECT were analyzed using semiautomatic subtraction of the 2 registered datasets based on PCA applied to the region of interest including the thyroid and an interactive method for visual comparison of the 2 image datasets.
View Article and Find Full Text PDF