Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The development of enzyme-based bioelectronic devices, including biosensors and biomimetic systems, has significantly advanced with the introduction of innovative materials such as hydrogels, deep eutectic solvents (DES), and ionic liquids (ILs). These materials offer unique advantages in enhancing biodevice performance, particularly in enzyme stabilization, biocompatibility, and electrochemical sensitivity. Hydrogels, known for their high water content and flexibility, provide an ideal matrix for enzyme immobilization in biological applications but are limited by low ionic conductivity. DES, with their green chemistry credentials and ability to stabilize enzymes under harsh conditions, show great promise, although scalability and performance in complex biological systems remain challenges. ILs, with their superior electron transfer capabilities, enable high sensitivity in electrochemical biosensors, though issues of viscosity and potential toxicity need to be addressed for broader biomedical use. This review provides a comparative analysis of the roles of these materials in enzyme-based biosensors and bioelectronics, including microbatteries and bioelectrosynthesis, highlighting their respective strengths, limitations, and future opportunities. The integration of these materials holds great potential for advancing bioelectronics technologies, with applications spanning medical diagnostics, environmental monitoring, and industrial processes. By addressing current challenges and optimizing these materials for large-scale use, the future of enzyme-based devices could see significant improvements in efficiency, sensitivity, and sustainability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12371592PMC
http://dx.doi.org/10.1021/acsmeasuresciau.5c00036DOI Listing

Publication Analysis

Top Keywords

hydrogels deep
8
deep eutectic
8
eutectic solvents
8
ionic liquids
8
enzyme-based biosensors
8
biosensors bioelectronics
8
materials
5
comparative roles
4
roles hydrogels
4
solvents ionic
4

Similar Publications

With the continuous development of flexible sensors and flexible energy storage devices, gel materials with good flexibility, toughness, and tunable properties have attracted wide attention. Deep eutectic solvents (DES) have an obvious advantage of thermal and chemical stability over water. Therefore, eutectogels can effectively solve the problem of insufficient stability of traditional hydrogels.

View Article and Find Full Text PDF

A novel dual-mode sensing system integrating a magnetic core-shell CuFeO/Cu/MnO nanozyme with a stimuli-responsive agarose-deep eutectic solvent hydrogel (DES-Aga) is reported. The nanozyme exhibits exceptional oxidase-like activity, characterized by a low Michaelis constant (K = 0.14 mM) and high catalytic efficiency (V = 1.

View Article and Find Full Text PDF

Islet transplantation offers a promising therapeutic strategy for type 1 diabetes patients with inadequate glycemic control or severe complications. Islet encapsulation using biocompatible materials presents a potential solution to reduce immune rejection. This study fabricated and characterized Schiff base hydrogels (CMOCs) composed of varying ratios of carboxymethyl chitosan (CMCS) and oxidized carboxymethyl starch (OCMS).

View Article and Find Full Text PDF

Sustainable and chemically resilient hydrogels are critically needed in biointerface engineering, particularly for 3D cell culture systems and surface modification under physiological to mildly alkaline conditions. However, physically cross-linked cellulose nanofiber (CNF) hydrogels─despite their renewable origin and biocompatibility─typically disintegrate at pH > 8, limiting their use in polydopamine (PDA)-based surface functionalization. Here, we present a simple and scalable physical treatment strategy to fabricate alkali-resistant, physically cross-linked hydrogels from carboxymethyl cellulose nanofibers (CMCF).

View Article and Find Full Text PDF

Hyperelastic characterization deep indentation.

Soft Matter

September 2025

Mechanical Engineering Department, Institute of Applied Mathematics School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

Hyperelastic material characterization is crucial for sensing and understanding the behavior of soft materials-such as tissues, rubbers, hydrogels, and polymers-under quasi-static loading before failure. Traditional methods typically rely on uniaxial tensile tests, which require the cumbersome preparation of dumbbell-shaped samples for clamping in a uniaxial testing machine. In contrast, indentation-based methods, which are non-destructive and can be conducted without sample preparation, remain underexplored.

View Article and Find Full Text PDF