Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Intrinsic disorder (ID) in proteins is a complex phenomenon, encompassing a continuum from entirely disordered regions to structured domains with flexible segments. The absence of a ground truth for all forms of disorder, combined with the possibility of structural transitions between ordered and disordered states under specific conditions, makes accurate prediction of ID especially challenging. The Critical Assessment of Protein Intrinsic Disorder (CAID) evaluates ID prediction methods using diverse benchmarks derived from DisProt, a manually curated database of experimentally validated annotations. This paper presents findings from the third (CAID3), in which 24 new methods were assessed along with the predictors from previous rounds. Compared to CAID2, the top-performing methods in CAID3 demonstrated significant gains in average precision: over 31% improvement in predicting linker regions, and 15% in disorder prediction. This round introduces a new binding sub-challenge focused on identifying binding regions within known IDR boundaries. The results indicate that this task remains challenging, highlighting the potential for improvement. The top-performing methods in CAID3 are mostly new and commonly used embeddings from protein language models (pLMs), underscoring the growing impact of pLMs in tackling the complexities of disordered proteins and advancing ID prediction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.70045DOI Listing

Publication Analysis

Top Keywords

intrinsic disorder
12
critical assessment
8
assessment protein
8
protein intrinsic
8
protein language
8
language models
8
top-performing methods
8
methods caid3
8
disorder
6
protein
4

Similar Publications

Aims: In-stent restenosis (ISR) is a significant limitation of coronary stent implantation, but the exact mechanism of ISR remains unclear. Patients after percutaneous coronary intervention (PCI) are in a hypercoagulable state; however, there is less information on its association with chronic coronary artery disease (CAD) in patients with ISR after PCI. We aimed to clarify whether or not CAD patients with ISR after PCI are in a hypercoagulable state and whether or not PS exposure on extracellular vesicles (EVs), blood cells (BCs), and endothelial cells (ECs) is involved in the hypercoagulable state.

View Article and Find Full Text PDF

Leber's hereditary optic neuropathy (LHON), a mitochondrial disorder marked by central vision loss, exhibits incomplete penetrance and male predominance. Since there are no adequate models for understanding the rapid vision loss associated with LHON, we generated induced pluripotent stem cells (iPSCs) from LHON patients carrying the pathogenic m.3635G > A mutation and differentiated them into retinal pigment epithelium (RPE) cells.

View Article and Find Full Text PDF

Developmental Neuroplasticity Enables Recovery from Anesthetic-Induced Synaptic Perturbations in the Immature Brain.

Neurochem Int

September 2025

Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Advanced Medical Technology Center, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key La

General anesthetics are essential in pediatric medicine, yet concerns persist regarding their potential neurotoxic effects on the developing brain. Whether transient synaptic disruptions caused by anesthesia lead to long-term deficits or are mitigated by endogenous plasticity remains unresolved. Here, we use longitudinal in vivo two-photon imaging in awake mice to investigate the structural and functional consequences of a single, clinically relevant exposure to sevoflurane at postnatal day 20.

View Article and Find Full Text PDF

Three-dimensional co-culturing reveals human stem cell-derived somatostatin interneurons with subclass expression.

Stem Cell Reports

September 2025

Regenerative Neurophysiology, Lund Stem Cell Centre, MultiPark Strategic Area in Neuroscience, Department of Experimental Medical Science, Faculty of Medicine, Lund University, 221 84 Lund, Sweden. Electronic address:

Cortical interneuron deficiencies, particularly involving the somatostatin (SST) subtypes, contribute to neurological and neuropsychiatric disorders. These interneurons are difficult to derive in vitro from human embryonic stem cells (hESCs) due to their late embryonic development and dependence on glial interaction. To this end, we developed a three-dimensional co-culture model of hESC-derived neurons, enabling long-term development, functional maturity, and neuron-glial interaction.

View Article and Find Full Text PDF

The transmission of mosquito-borne diseases is intrinsically linked to mosquito blood-feeding behavior, yet the metabolic adaptations of the midgut microbiota in response to blood meals remain poorly understood. This study aimed to characterize the structural and functional changes in the midgut microbiota of Aedes albopictus following blood feeding and to elucidate their potential physiological implications. In this study, we employed 16S rRNA gene amplification coupled with PacBio Sequel II sequencing to characterize shifts in the midgut microbiota of Aedes albopictus before and after blood feeding on mice.

View Article and Find Full Text PDF