98%
921
2 minutes
20
Despite the high prevalence of ERG transcription factor translocations in prostate cancer, the mechanism of tumorigenicity remains poorly understood. Using lineage tracing, we find the tumor-initiating activity of ERG resides in a subpopulation of murine basal cells that coexpress luminal genes (Basal) and not in the larger population of ERG luminal cells. Upon ERG activation, Basal cells give rise to highly proliferative intermediate (IM) cells with stem-like features that coexpress basal, luminal, hillock and club marker genes, before transitioning to Krt8 luminal cells. Transcriptomic analysis of ERG human prostate cancers confirms the presence of rare ERG Basal cells, as well as IM cells whose presence is associated with a worse prognosis. Single-cell analysis revealed a chromatin state in ERG IM cells enriched for STAT3 transcription factor binding sites and elevated expression of the KMT2A/MLL1 and DOT1L, all three of which are essential for ERG-driven tumorigenicity in vivo. In addition to providing translational opportunities, this work illustrates how single-cell approaches combined with lineage tracing can identify cancer vulnerabilities not evident from bulk analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41588-025-02289-w | DOI Listing |
FASEB J
September 2025
Department of Plastic Surgery and Burn, Third XiangYa Hospital, Central South University, Changsha, Hunan, China.
Defective wounds pose health risks, and treatment is challenging. Umbilical cord-derived mesenchymal stem cells (UCMSCs) show promise for healing. Primary UCMSCs were isolated and extracted in vitro, and the proliferation and differentiation characteristics were detected by flow cytometry and trilineage differentiation, and a 3D spherical cell culture was performed.
View Article and Find Full Text PDFBiol Lett
September 2025
Department of Science, Roma Tre University, Rome, Italy.
In the past decades, several authors have investigated the possibility that genome size is correlated with metabolic rates, obtaining conflicting results. The main biological explanation among the supporters of this correlation was related to the nucleotypic effect of the genome size, which, determining the cellular volume and hence the surface area-to-volume ratio, influences cellular metabolism. In the present study, I tested a different hypothesis: genome size, influencing red blood cell (RBC) volume, is correlated with capillary density and diameter.
View Article and Find Full Text PDFFront Immunol
September 2025
Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
NSG-SGM3 humanized mouse models are well-suited for studying human immune physiology but are technically challenging and expensive. We previously characterized a simplified NSG-SGM3 mouse, engrafted with human donor CD34 hematopoietic stem cells without receiving prior bone marrow ablation or human secondary lymphoid tissue implantation, that still retains human mast cell- and basophil-dependent passive anaphylaxis responses. Its capacities for human antibody production and human B cell maturation, however, remain unknown.
View Article and Find Full Text PDFFront Nutr
August 2025
Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy.
Background: Voghera pepper (VP) extracts were demonstrated to have anti-oxidant ability in several cell types.
Purpose: This study aimed to assess whether VP-extracts could lower oxidative stress and modulate thyroid cancer (TC) cells behavior .
Methods: Extracts were analyzed using the LC-DAD-MS system.
Front Pharmacol
August 2025
General Surgery Department Three, Gansu Province Central Hospital, Lanzhou, China.
Fast and early detection of low-dose chemical toxicity is a critical unmet need in toxicology and human health, as conventional 2D culture models often fail to capture subtle cellular responses induced by sub-toxic exposures. Here, we present a bioengineered three-dimensional (3D) electrospun nanofibrous scaffold composed of polycaprolactone that enhances chromatin accessibility and primes fibroblasts for improved sensitivity to low-dose chemical stimuli in a short period. The scaffold mimics the extracellular matrix, providing topographical cues that reduce cytoskeletal tension and promote nuclear deformation, thereby increasing chromatin openness.
View Article and Find Full Text PDF