Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The spinal cord is a highly dynamic network, playing significant roles in the vital functions of the brain. Disorders of the spinal cord, such as spinal cord injury and amyotrophic lateral sclerosis (ALS), are associated with neurodegeneration, often resulting in morbidity and mortality. The blood-brain barrier (BBB) poses a major challenge to imaging and therapeutic agents because less than 2% of small-molecule drugs and almost no large-molecule drugs can cross the BBB. Furthermore, spatial spectroscopy studies have shown highly heterogeneous BBB crossing with significant accumulation at the unintended brain regions. Thus, targeting systems that can cross the BBB at the spinal cord and precisely target specific cell types/populations are vitally needed. Carbon dots can be custom-designed to accumulate at the spinal cord; thus, they offer great potential as delivery platforms for imaging and therapeutic approaches. Since neurons are metabolically highly active and rely on glucose, we designed glucose-based carbon dots (GluCDs) with a diameter of ∼4 nm and glucose-like surface groups. We determined the CNS distribution of GluCDs on three scales: 1. brain regional distribution, 2. cellular tropism ( neurons glia), and 3. intracellular localization. We found that GluCDs (1) crossed the BBB at the spinal cord level, localized primarily to the spinal cord, and were quickly transported to higher centers in the brain, revealing supraspinal connectome within 4 hours after systemic delivery (minimally invasive and significantly faster than the available technologies); (2) almost exclusively localized to neurons without the need for a targeting ligand (neuronal self-targeting), and (3) were confined to late endosomal/lysosomal compartments in the neurons. Then, we verified our findings in a cervical spinal cord contusion injury model with GluCDs targeting the neurons at the injury epicenter. Therefore, GluCDs can be used as robust imaging agents to obtain rapid snapshots of the spinal/supraspinal network. GluCD nanoconjugates can open new avenues for targeted imaging of spinal cord injury. These findings can be extended to other spinal disorders such as ALS, spinal muscular atrophy, and spinal stroke.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12379595PMC
http://dx.doi.org/10.1039/d5nr02670aDOI Listing

Publication Analysis

Top Keywords

spinal cord
36
spinal
13
carbon dots
12
cord
9
supraspinal connectome
8
glucose-based carbon
8
cord injury
8
imaging therapeutic
8
cross bbb
8
bbb spinal
8

Similar Publications

Purpose: This study aimed to investigate the relationship between tissue bridges and bladder and bowel outcomes in chronic cervical spinal cord injury (SCI).

Methods: Between July 2020 and January 2024, 44 patients with chronic cervical SCI were retrospectively included in this cross-sectional study at a specialized SCI center. Lesion severity was assessed by tissue bridges, lesion length, lesion width, and lesion area.

View Article and Find Full Text PDF

Astrocytic monoamine oxidase B (MAOB)-gamma-aminobutyric acid (GABA) axis as a molecular brake on repair following spinal cord injury.

Signal Transduct Target Ther

September 2025

Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, Republic of Korea.

Neuroregeneration and remyelination rarely occur in the adult mammalian brain and spinal cord following central nervous system (CNS) injury. The glial scar has been proposed as a major contributor to this failure in the regenerative process. However, its underlying molecular and cellular mechanisms remain unclear.

View Article and Find Full Text PDF

The white matter of the spinal cord is essential for sensory and motor signaling, and its proper development is crucial for establishing functional neuronal circuits. However, the mechanisms underlying white matter formation remain incompletely understood. We hypothesized that the extracellular matrix, particularly laminins, plays a key role in this process.

View Article and Find Full Text PDF

Pompe disease is an autosomal recessive neuromuscular disorder characterized by a deficiency of acid α-glucosidase (GAA), an enzyme responsible for lysosomal glycogen degradation in all cells. Respiratory distress is a common symptom among patients with Pompe disease resulting from weakness of primary respiratory neuromuscular units of the diaphragm and genioglossus and the motor neurons which innervate them. The only FDA approved treatment is enzyme replacement therapy (ERT) of recombinant human GAA (rhGAA) which slows the decline of motor function and extends life expectancy.

View Article and Find Full Text PDF

Cross-linked genes analysis of programmed cell death and network pharmacological validation after spinal cord injury.

Biochem Biophys Res Commun

August 2025

Department of othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Me

Programmed cell death (PCD), which describes cell death regulated by a sequence of gene expression events, strongly impacts the prognosis of spinal cord injury (SCI). Nevertheless, the connections between the various PCD types and the cross-linked genes regulate that these types of cell death in SCI remain unclear. This study sought to identify and investigate the key genes connections that regulated PCD in SCI.

View Article and Find Full Text PDF