98%
921
2 minutes
20
Vascular permeability, crucial for organ function, relies on the endothelial barrier formed by intercellular junctions (AJs, TJs). However, mechanisms regulating these junctions and maintaining endothelial barrier integrity are incompletely understood. Here, we investigate the RNA-binding protein G3BP1's role in endothelial barrier integrity using G3bp1 knockout mice and G3BP1-deficient human endothelial cells. We found that G3BP1 loss compromised barrier function, leading to reduced AJ and TJ protein levels and increased vascular permeability, particularly under LPS-induced inflammatory conditions. Mechanistically, G3BP1 exerts dual post-transcriptional control: it directly binds to and stabilizes mRNAs of key AJ proteins (VE-cadherin, p120), ensuring their sustained expression. Concurrently, G3BP1 binds MYD88 mRNA and promotes its decay, thereby suppressing the pro-permeability MYD88-ARNO-ARF6 signaling cascade, particularly during inflammation. Pharmacological or genetic inhibition of this pathway, or VE-cadherin overexpression, partially rescued barrier defects in G3BP1-deficient models, with combined interventions showing enhanced restoration under inflammatory conditions. Our findings reveal that G3BP1 maintains vascular barrier integrity through dual post-transcriptional control: stabilizing key AJ mRNA and suppressing inflammatory signaling via MYD88 mRNA decay. Targeting G3BP1 may offer a therapeutic strategy for vascular permeability disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10456-025-09993-5 | DOI Listing |
Pediatr Res
September 2025
Laboratory of Fetal Neuroprogramming, Institute of Health Sciences, University of O'Higgins, Rancagua, Chile.
Background: Fetal growth restriction (FGR) causes an adaptive redistribution of the cardiac output towards sustained cerebral vasodilation. However, the consequences of FGR and cerebral vasodilatation due to fetal hypoxia on the blood-brain barrier (BBB) are still poorly studied. This study assesses BBB permeability in the neonatal cortex of pups gestated under intrauterine hypobaric hypoxia.
View Article and Find Full Text PDFCNS Drugs
September 2025
Global Health Neurology Lab, Sydney, NSW, 2150, Australia.
Acute ischemic stroke (AIS) remains a leading cause of mortality and long-term disability globally, with survivors at high risk of recurrent stroke, cardiovascular events, and post-stroke dementia. Statins, while widely used for their lipid-lowering effects, also possess pleiotropic properties, including anti-inflammatory, endothelial-stabilizing, and neuroprotective actions, which may offer added benefit in AIS management. This article synthesizes emerging evidence on statins' dual mechanisms of action and evaluates their role in reducing recurrence, improving survival, and mitigating cognitive decline.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Department of Pharmacology, Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India.
Alzheimer's disease (AD) is the most common, complex, and untreatable form of dementia which is characterized by severe cognitive, motor, neuropsychiatric, and behavioural impairments. These symptoms severely reduce the quality of life for patients and impose a significant burden on caregivers. The existing therapies offer only symptomatic relief without addressing the underlying silent pathological progression.
View Article and Find Full Text PDFAdv Mater
September 2025
State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
Delivering therapeutics across the blood-brain barrier (BBB) remains a major challenge in ischemic stroke therapy. Ischemic stroke induces upregulation of various inflammatory membrane receptors on brain endothelial cells, offering potential entry points for receptor-mediated transcytosis. This study proposes a universal targeting strategy by employing inflammatory pathway antagonists as targeting ligands, which broadens the spectrum of available ligands beyond traditional receptor-binding molecules.
View Article and Find Full Text PDFJ Mol Histol
September 2025
Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang, 050017, China.
Numerous people experiencing acute myocardial infarction are also experiencing myocardial ischemia-reperfusion injury (MIRI). Pyroptosis is a core mechanism in MIRI. Tongxinluo (TXL) has a significant protective effect on endothelial cell function.
View Article and Find Full Text PDF