98%
921
2 minutes
20
Electrocatalysis provides a green and sustainable approach for the upgrading of biomass-derived 5-hydroxymethylfurfural (HMF) to the polymer monomer 2,5-furandicarboxylic acid (FDCA). Precisely tuning the electronic structure, specifically the electron gradient orbitals and spin state of key active sites, is crucial for achieving high catalytic performance, as it directly influences the adsorption strength of the reactive substrate. Herein, by introducing Mn with low 3d filling, the e-e repulsion between bridging O and Ni is weakened due to π-donation function. Corresponding energy level splitting and partial occupancy of the spin-up state orbital determine the location and state density of the Fermi level. Based on this, an ultra-high current density of 1.2 A cm at the potential of only 1.42 V versus RHE can be achieved with a well-designed Mn-modified porous metallic skeleton Ni for HMF electrooxidation. Furthermore, continuous flow electrolysis experiments confirmed the stable FDCA production capacity, yielding 88.3% FDCA after approximately 300 h of operation. This insight into the electron gradient orbitals-activity relationship can provide valuable guidance for developing electrocatalysts for biomass upgrading.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202511868 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
In this study, we analyze InO thin-film transistors (InO-TFT) using synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES) in conditions. A bottom-gate InO-TFT with a high- AlO gate dielectric, grown on thermally oxidized silicon (SiO/p-Si), was examined while operating at varying and . The results reveal that the In 3d core level binding energy varies along the horizontal channel length, driven by the potential gradient induced by .
View Article and Find Full Text PDFEBioMedicine
September 2025
Cancer Centre, The First Hospital of Jilin University, Changchun, Jilin, 130021, China; Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, 130021, China; Institute of Translational Medicine, Key Laboratory of Organ Regeneration and Transplantation of M
Background: Enterovirus D68 (EV-D68) is a prominent non-polio enterovirus known to cause severe respiratory infections and poliomyelitis-like illnesses in children. Recently, we identified MFSD6 as a receptor for EV-D68, providing a potential target for blocking viral entry into cells. This study aimed to develop an MFSD6-based decoy receptor to neutralise EV-D68 and elucidate its mechanism of action.
View Article and Find Full Text PDFMicrob Genom
September 2025
International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, UK.
High rates of mortality of the common cockle, , have occurred in the Wash Estuary, UK, since 2008. A previous study linked the mortalities to a novel genotype of , with a strong correlation between cockle moribundity and the presence of . Here, we characterize a novel iridovirus, identified by chance during metagenomic sequencing of a gradient purification of cells, with the presence also correlated to cockle moribundity.
View Article and Find Full Text PDFInorg Chem
September 2025
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
Confronting the dual challenges of carbon neutrality and sustainable energy, photocatalytic CO reduction requires precise control over product selectivity. This study demonstrates that surface hydroxyl (-OH) density serves as a molecular switch for reaction pathways in graphene oxide/cobalt tetraphenylporphyrin (GO/CoTPP) hybrids. By tuning the reduction degree of GO supports via gradient hydrazine hydrate treatment (0-85%), we constructed catalysts with controlled -OH concentrations.
View Article and Find Full Text PDFNanoscale Adv
August 2025
Department of Chemistry and Industrial Chemistry & INSTM RU, University of Genoa Via Dodecaneso 31 16146 Genova (GE) Italy
Bismuth ferrite (BiFeO), a perovskite oxide with both ferroelectric and antiferromagnetic properties, has emerged as a promising material for environmental cleanup due to its piezo-photocatalytic activity. The material's ability to degrade organic pollutants, such as azo dyes, under both light irradiation and mechanical stress (ultrasonic waves) offers a dual-action mechanism for efficient wastewater treatment. In this work, we explore the synthesis of BiFeO nanoparticles a simple sol-gel method, followed by characterization of their structural, magnetic, and photocatalytic properties.
View Article and Find Full Text PDF