98%
921
2 minutes
20
Plasmon resonance energy transfer (PRET) faces critical challenges in achieving precise molecular-scale distance control and non-perturbative operation within single live-cell environments, e.g., the inability to dynamically tune the donor-acceptor distance () at the single molecular dipole level. To overcome these bottlenecks, we designed a non-genetic, non-fluorescent PRET nanodevice integrating a single gold nanoparticle donor (ErbB3-targeting antibody@GNP), a single molecular dipole acceptor (ErbB2-targeting aptamer@TAMRA), and a programmable nucleic acid spacer (nTA). This spacer enables precise control of (2.7 nm vs 7.2 nm) on the single-living MCF-7 cell membrane. At ≈ 2.7 nm (PRET-ON), ErbB2-ErbB3 heterodimerization occurs, suppressing apoptosis. At ≈ 7.2 nm (PRET-OFF), receptor dissociation activates caspase-9-mediated apoptosis via suppression of the AKT pathway suppression. This distance-tunable single molecular dipole PRET nanodevice overcomes membrane fluidity constraints, eliminates photobleaching artifacts, and provides long-term, single-cell resolution, establishing a potential universal platform for spatiotemporally controlling receptor interactions and downstream signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.5c03596 | DOI Listing |
Genome Biol
September 2025
Center for Genomic Medicine, Cardiovascular Research Center, , Massachusetts General Hospital Simches Research Center, 185 Cambridge Street, CPZN 5.238,, Boston, MA, 02114, USA.
Background: Rare genetic variation provided by whole genome sequence datasets has been relatively less explored for its contributions to human traits. Meta-analysis of sequencing data offers advantages by integrating larger sample sizes from diverse cohorts, thereby increasing the likelihood of discovering novel insights into complex traits. Furthermore, emerging methods in genome-wide rare variant association testing further improve power and interpretability.
View Article and Find Full Text PDFNat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFNat Protoc
September 2025
Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
Structural biology is fundamental to understanding the molecular basis of biological processes. While machine learning-based protein structure prediction has advanced considerably, experimentally determined structures remain indispensable for guiding structure-function analyses and for improving predictive modeling. However, experimental studies of protein complexes continue to pose challenges, particularly due to the necessity of high protein concentrations and purity for downstream analyses such as cryogenic electron microscopy.
View Article and Find Full Text PDFNat Chem
September 2025
Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, India.
[2,1]-Azaboranaphthalenes represent unique boron-nitrogen (BN) isosteres of naphthalenes, attracting interest for the development of molecules with enhanced therapeutic potency. The existing synthetic strategies are generally two-component reactions with harsh conditions. Here we report an organocatalysed three-component modular synthesis of ring-fused BN isosteres and BN-2,1-azaboranaphthalenes following ring expansion of unstrained cyclic ketones (n = 4-8) via Wolff-type rearrangement.
View Article and Find Full Text PDFNPJ Precis Oncol
September 2025
Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
Breast cancer is a highly heterogeneous disease with diverse outcomes, and intra-tumoral heterogeneity plays a significant role in both diagnosis and treatment. Despite its importance, the spatial distribution of intra-tumoral heterogeneity is not fully elucidated. Spatial transcriptomics has emerged as a promising tool to study the molecular mechanisms behind many diseases.
View Article and Find Full Text PDF