98%
921
2 minutes
20
Coastal groundwater salinization driven by seawater intrusion creates dynamic salt-freshwater interfaces with steep biogeochemical gradients. While hydrological changes during seawater intrusion are well characterized, the linkage between hydrogeochemical variability and microbial community structure remains poorly resolved. Here, an integrated approach coupling V4-region 16S rRNA amplicon sequencing (Illumina) with geochemical profiling was employed to decipher prokaryotic diversity dynamics and environmental determinants in a Quaternary aquifer undergoing salinization, Pearl River Delta, China. Proteobacteria dominated bacterial communities across salinity gradients, whereas archaeal assemblages shifted from Thaumarchaeota-dominated freshwater zones to Methanobacteriota-enriched brackish/saline groundwater. High-salinity zones harbored anaerobic functional taxa, including sulfate-reducing Desulfovibrio and methanogenic Methanococcus, confirming active sulfate reduction and methanogenesis in the aquifer-processes critical to carbon and sulfur cycling in coastal groundwater systems. Microbial α-diversity correlated positively with salinity (total dissolved solids, TDS >1 g/L), despite non-linear community shifts along the intrusion path. Vector-based redundancy analysis identified TDS and total nitrogen (TN) as primary drivers of microbial assemblage restructuring (p < 0.01). Our results established salinity as a master regulator of groundwater microbiome composition and function, with direct implications for predicting biogeochemical feedbacks (e.g., methane emissions, sulfide mobilization) in coastal aquifers under climate-driven seawater intrusion. This mechanistic understanding of microbe-environment interactions supports optimized management of contaminated coastal groundwater resources facing salinization threats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marenvres.2025.107471 | DOI Listing |
Int J Surg
September 2025
Department of Cardiovascular Medicine, The Affiliated Panyu Central Hospital of Guangzhou Medical University (Cardiovascular Diseases Research Institute of Panyu District), Guangdong, China.
Curr Atheroscler Rep
September 2025
Division of Gastroenterology and Hepatology, Lynda K. and David M. Underwood Center for Digestive Health, Houston Methodist Hospital, Houston, TX, USA.
Purpose Of Review: This review aims to characterize the known cardiovascular (CV) manifestations associated with inflammatory bowel disease (IBD) and the underlying mechanisms driving these associations.
Recent Findings: Gut dysbiosis, a hallmark of patients with IBD, can result in both local and systemic inflammation, thereby potentially increasing the risk of cardiovascular disease (CVD) in the IBD population. Micronutrient deficiencies, anemia, and sarcopenia independently increase the risk of CVD and are frequent comorbidities of patients with IBD.
Food Funct
September 2025
College of Food Science, Southwest University, Chongqing, 400715, China.
Bifidobacteria are naturally found in the human gut and quickly establish dominance shortly after birth, playing a crucial role in the development and stability of the infant gut microbiota. A growing body of research suggests that host and environmental factors shape the colonization and the relative abundance of bifidobacteria in the infant gut during early life. Understanding the factors that influence bifidobacterial colonization and maintaining normal colonization levels are keys to ensuring gut health.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Department of Medical Microbiology and Parasitology, Faculty of Medicine, Selangor Branch, Universiti Teknologi MARA (UiTM) Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, 47000, Selangor, Malaysia.
Streptococcus bovis is an opportunistic bacterium consistently associated with colorectal cancer (CRC). This article reviews previous experimental evidence that has successfully demonstrated the role of S. bovis species in the context of CRC.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA.
Unlabelled: (SA) colonizes most mammals but also represents a danger in clinical settings because it evolves resistance against antibiotics, and SA infections represent a leading cause of death worldwide. SA nasal carriage provides the bacterial reservoir for opportunistic infection because clinical strains often match the patient's own nasally carried strain. The global SA carriage rate is typically reported as 25%-30% after sampling subjects once or twice and defining carrier status using culture-based methods.
View Article and Find Full Text PDF