Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Signaling Lymphocytic Activation Molecule (SLAM) family receptors play essential roles in regulating immune cell activation, differentiation, and communication. SLAMF5, also known as CD84, has drawn increasing attention in cancer immunology due to its involvement in both tumor progression and immune modulation. This review explores the expression patterns, signaling mechanisms, and functional roles of SLAMF5/CD84 within the tumor microenvironment. SLAMF5/CD84 is expressed on multiple immune cell types and contributes to immune evasion by enhancing regulatory B cell function, promoting myeloid-derived suppressor cell expansion, and upregulating immune checkpoint molecules such as PD-L1. Its expression has been implicated in various hematologic malignancies and solid tumors, including chronic lymphocytic leukemia, multiple myeloma, and triple-negative breast cancer. Emerging therapeutic approaches targeting SLAMF5/CD84-such as monoclonal antibodies and CAR T-cell therapies-offer promising strategies to counteract immunosuppression and improve treatment outcomes. By highlighting recent findings and therapeutic developments, this review underscores the significance of SLAMF5/CD84 as both a prognostic biomarker and a novel target in cancer immunotherapy. Understanding SLAMF5/CD84's multifaceted roles in the tumor immune landscape could support the development of more effective and personalized cancer treatment strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbin.70074DOI Listing

Publication Analysis

Top Keywords

immune cell
8
immune
6
cancer
5
exploring slamf5/cd84
4
slamf5/cd84 cancer
4
cancer advancing
4
advancing frontiers
4
tumor
4
frontiers tumor
4
tumor immunology
4

Similar Publications

Systemic Delivery of an mRNA-Encoding, Tumor-Activated Interleukin-12 Lock to Eliminate Tumors and Avoid Immune-Related Adverse Events.

Nano Lett

September 2025

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.

Interleukin-12 (IL-12) is a robust proinflammatory cytokine that activates immune cells, such as T cells and natural killer cells, to induce antitumor immunity. However, the clinical application of recombinant IL-12 has been limited by systemic immune-related adverse events (irAEs) and rapid degradation. To address these challenges, we employed mRNA technology to encode a tumor-activated IL-12 "lock" fusion protein that offers both therapeutic efficacy and systemic safety.

View Article and Find Full Text PDF

Roles of Extracellular Superoxide Dismutase in Regulating Cell Migration and Vesicle Trafficking in Dictyostelium and Mammalian Cells.

Dev Growth Differ

September 2025

Department of Biological Sciences, College of Arts, Sciences, and Education, Florida International University, Miami, Florida, USA.

Superoxide dismutases (SODs) are key regulators of reactive oxygen species (ROS) and redox balance. Although intracellular SODs have been extensively studied, growing attention has been directed toward understanding the roles of extracellular SODs in both Dictyostelium and mammalian systems. In Dictyostelium discoideum, SodC is a glycosylphosphatidylinositol (GPI)-anchored enzyme that modulates extracellular superoxide to regulate Ras, PI3K signaling, and cytoskeletal remodeling during directional cell migration.

View Article and Find Full Text PDF

Background: A secondary Pasteurella multocida (Pm) infection following Mycoplasma ovipneumoniae (Mo) challenge in sheep results in severe respiratory disease. Scavenger receptor A (SRA) is a key phagocytic receptor on macrophages, which facilitates microbial clearance. However, the role of sheep SRA in Mo-associated secondary Pm infection is less understood.

View Article and Find Full Text PDF

The COVID-19 pandemic, caused by the continuously evolving SARS-CoV-2 virus, has presented persistent global health challenges. As novel variants emerge, many with enhanced transmissibility and immune evasion capabilities, concerns have intensified regarding the efficacy of existing vaccines and therapeutics. This review provides a comprehensive overview of the current landscape of COVID-19 vaccination, including the development and performance of monovalent and bivalent boosters, and examines their effectiveness against newly emerging variants of interest (VOIs) and variants under monitoring (VUMs), such as JN.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) therapies have demonstrated remarkable clinical efficacy in hematological malignancies, validating their therapeutic potential. However, challenges such as therapeutic resistance and limited accessibility hinder their broader application. To overcome these limitations, alternative CAR-based cell therapies, including CAR-Natural Killer (CAR-NK), CAR-macrophage (CAR-M), and CAR-dendritic cell (CAR-DC) therapies, have been proposed.

View Article and Find Full Text PDF