98%
921
2 minutes
20
The solute carrier (SLC) superfamily comprises a broad array of membrane-bound transport proteins that are integral to the intracellular uptake of various substrates, including nutrients, endogenous metabolites, and an expanding repertoire of anticancer drugs. Although they play a pivotal role in drug disposition and pharmacokinetics, SLC-mediated influx mechanisms have historically garnered less research attention compared to the extensively studied ATP-binding cassette (ABC) efflux transporters. Increasing evidence now indicates that the expression profiles, functional activity, and regulatory pathways of SLC transporters critically influence intracellular drug accumulation, therapeutic outcomes, and the emergence of resistance in cancer. This review presents an in-depth analysis of key SLC transporters, such as organic cation transporters (OCTs), organic anion transporting polypeptides (OATPs), L-type amino acid transporter 1 (LAT1), and the cystine/glutamate exchanger(xCT), which have demonstrated relevance in mediating the uptake of anticancer agents. We explore their structural features, cancer-specific expression dynamics, and known interactions with chemotherapeutic and molecularly targeted therapies. Additionally, unconventional drug transport routes, including lipid raft-assisted endocytosis, exosome-mediated cargo transfer, and ion channel-facilitated uptake, are discussed as potential contributors to drug delivery in tumor cells. The review further explores innovative therapeutic strategies that aim to harness SLC transporters for clinical benefit, including prodrug designs, nanoparticle-based delivery systems, and transporter-directed drug development. Clinical progress in targeting LAT1, xCT, and OATP family members is also reviewed, with a focus on ongoing trials. Finally, we address the current limitations in targeting SLCs, such as overlapping substrate specificity, tumor-specific heterogeneity, and interindividual genetic variations affecting transporter function. By framing SLCs as viable and strategic targets within the oncology drug development landscape, this review highlights their emerging potential in shaping future precision oncology initiatives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10637-025-01577-w | DOI Listing |
J Cell Mol Med
September 2025
Translational and Clinical Research Institute, Newcastle University, Newcastle, UK.
The cellular uptake of nutrients essential for cell growth and survival is facilitated by solute carrier (SLC) transporters. Members of the SLCO subfamily of SLCs mediate the uptake of substrates relevant to breast cancer (BC), including steroid hormones and anticancer drugs. Accumulating evidence suggests that altered expression of these transporters may affect BC pathogenesis by influencing cell proliferation and anticancer drug resistance.
View Article and Find Full Text PDFMed Res Rev
September 2025
Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
Solute carrier transporters (SLCs) are integral membrane proteins that play pivotal roles in maintaining cellular homeostasis by mediating the transport of a diverse range of substrates across cell membranes. With their involvement in fundamental physiological processes such as nutrient uptake, neurotransmitter signaling, and drug transport, SLCs have emerged as crucial players in health and disease. Dysregulation of SLC function has been implicated in a spectrum of disorders, including metabolic diseases, cancer, and neurological afflictions.
View Article and Find Full Text PDFCommun Biol
August 2025
Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, China.
The solute carriers (SLC) superfamily comprises 66 families with more than 450 members. The Na/ cotransporter NBCe1 (SLC4A4) of SLC4 family plays critical roles in intracellular pH regulation and transepithelial transport of fluid and electrolytes. Here, we explored the structural mechanisms of NBCe1-A regulation by two phosphorylation modules: P-loop in the amino-terminal domain and H-loop in the transmembrane domain.
View Article and Find Full Text PDFPharmaceuticals (Basel)
August 2025
Plataforma Zebrafish of the Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, São Paulo 05503-900, Brazil.
The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Transcriptomic profiling of TnP-treated larvae following tail fin amputation revealed 558 differentially expressed genes (DEGs), categorized into four functional networks: (1) drug-metabolizing enzymes (, ) and transporters (SLC/ABC families), where TnP alters xenobiotic processing through Phase I/II modulation; (2) cellular trafficking and immune regulation, with upregulated myosin genes (/) enhancing wound repair and - signaling fine-tuning inflammation; (3) proteolytic cascades (, ) coupled to autophagy (, ) and metabolic rewiring (- axis); and (4) melanogenesis-circadian networks (/-) linked to ubiquitin-mediated protein turnover.
View Article and Find Full Text PDFNutrients
August 2025
Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA.
Genetic variation has been thought to alter the human dietary requirement for choline and subsequent circulating levels of its metabolites betaine and dimethylglycine (DMG). The aim of this genome-wide association study (GWAS) was to identify single nucleotide polymorphisms (SNPs) associated with serum choline, betaine, and dimethylglycine (DMG) as well as choline-to-betaine and betaine-to-DMG ratios. Data from the Collaborative Study of Genes, Nutrients and Metabolites (CSGNM; = 2402) were used to model individual associations of choline, betaine, and DMG circulating metabolites and their ratios with 680,975 SNPs, using linear regression.
View Article and Find Full Text PDF