A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

GPR55 activation alleviates cognitive dysfunction caused by neuropathic pain through modulation of microglia polarization and synaptic plasticity via the CaMKKβ/AMPK/SOCS3 signaling pathway. | LitMetric

GPR55 activation alleviates cognitive dysfunction caused by neuropathic pain through modulation of microglia polarization and synaptic plasticity via the CaMKKβ/AMPK/SOCS3 signaling pathway.

Cell Signal

Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China. Electronic add

Published: November 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cognitive impairment induced by neuropathic pain substantially diminishes quality of life, with hippocampal neuroinflammation identified as a critical pathogenic factor. Although G protein-coupled receptor 55 (GPR55) demonstrates anti-inflammatory, analgesic, and neuroprotective properties, its therapeutic potential and molecular mechanisms in neuropathic pain-induced cognitive deficits remain uncharacterized. Using a spared nerve injury (SNI) mouse model, we systematically investigated GPR55's neuroprotective mechanisms. Pharmacological activation of GPR55 effectively ameliorated cognitive dysfunction and attenuated hippocampal neuroinflammation and preserved synaptic plasticity by shifting microglial polarization toward the neuroprotective M2 phenotype in SNI mice. Mechanistic studies revealed that the immunomodulatory effects operate through the CaMKKβ/AMPK/SOCS3 signaling axis, as confirmed by pathway blockade using the specific inhibitor Compound C. These results demonstrate that GPR55 activation modulates microglial polarization, mitigates neuroinflammatory cascades, and preserves synaptic plasticity, thus alleviating neuropathic pain-associated cognitive dysfunction through a mechanism involving the CaMKKβ/AMPK/SOCS3 signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2025.112070DOI Listing

Publication Analysis

Top Keywords

cognitive dysfunction
12
synaptic plasticity
12
camkkβ/ampk/socs3 signaling
12
gpr55 activation
8
neuropathic pain
8
signaling pathway
8
hippocampal neuroinflammation
8
microglial polarization
8
cognitive
5
gpr55
4

Similar Publications