A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Exercise training ameliorates high-fat diet-induced skeletal muscle atrophy and ferroptosis via downregulation of STING. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: High-fat diet (HFD)-induced sarcopenic obesity can lead to reductions in muscle fiber diameter, enhanced protein degradation, and various forms of cell death. Exercise training has been shown to alleviate HFD-induced muscle atrophy. However, the underlying mechanism remains unclear. Stimulator of interferon genes (STING) is involved in ferroptosis and various forms of muscle atrophy. This study aimed to investigate the role of STING in exercise training against HFD-induced skeletal muscle atrophy.

Methods: In vivo, HFD-fed mice were subjected to exercise training and were intraperitoneally injected with the STING agonist diABZI or selective STING inhibitor C-176 for 8 weeks. In vitro, the differentiated C2C12 myotubes were treated with palmitic acid (PA), followed by interventions with Ferrostatin-1 (Fer-1), Erastin, diABZI or C-176. Grip strength test, body composition analysis, serum assay, histology analysis, dihydroethidium staining, transmission electron microscopy, myosin heavy chain staining, mitochondrial membrane potential, Western blot, and real-time quantitative PCR were performed.

Results: In vivo, exercise training significantly reduced the mRNA and protein expression of STING and ameliorated skeletal muscle atrophy and lipid peroxidation associated ferroptosis in HFD-fed mice. The STING agonist diABZI blunted the alleviative effect of exercise training in HFD-induced skeletal muscle atrophy and ferroptosis. The selective STING inhibitor C-176 and exercise training synergistically alleviated HFD-induced skeletal muscle atrophy and ferroptosis. In vitro, the ferroptosis inhibitor Fer-1 partially rescued PA-triggered C2C12 myotubes atrophy and ferroptosis, whereas the ferroptosis activator Erastin aggravated myotubes atrophy and ferroptosis. diABZI exacerbated PA-induced C2C12 myotubes atrophy and ferroptosis. Erastin impaired the ameliorative effect of C-176 in PA-induced C2C12 myotubes atrophy and ferroptosis.

Conclusions: Exercise training effectively suppressed HFD-mediated upregulation of STING in skeletal muscle. STING is a response factor for the alleviative effect of exercise training in HFD-induced skeletal muscle atrophy and ferroptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2025.08.043DOI Listing

Publication Analysis

Top Keywords

exercise training
36
skeletal muscle
28
muscle atrophy
28
atrophy ferroptosis
28
hfd-induced skeletal
16
c2c12 myotubes
16
myotubes atrophy
16
training hfd-induced
12
atrophy
11
ferroptosis
11

Similar Publications