From Delocalization to Disruption: The Role of Aromaticity in -Heterocyclic Carbenes' Reactions with Diazoalkane and Diazoester.

J Org Chem

Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aromaticity is a fundamental force shaping molecular stability and reactivity, yet its dynamic role along reaction coordinates remains poorly understood. In this study, we unveil how dynamic changes in aromatic character govern the reactivity of 5-ItBu with diazoalkanes and diazoesters through a multifaceted computational approach. By integrating electronic, magnetic, structural, and energetic aromaticity descriptors, we demonstrate that the retention of aromaticity along the reaction path markedly lowers activation barriers, while its disruption imposes significant energetic penalties. Activation strain model (ASM) and energy decomposition analysis (EDA) further underscore the role of aromatic stabilization in enhancing orbital interactions that drive reactivity. These insights establish a cohesive mechanistic framework, highlighting aromaticity not merely as a static structural feature but as a tunable lever in the design of selective transformations and next-generation catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.5c01606DOI Listing

Publication Analysis

Top Keywords

aromaticity
5
delocalization disruption
4
disruption role
4
role aromaticity
4
aromaticity -heterocyclic
4
-heterocyclic carbenes'
4
carbenes' reactions
4
reactions diazoalkane
4
diazoalkane diazoester
4
diazoester aromaticity
4

Similar Publications

Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.

View Article and Find Full Text PDF

Functional Metabolism of Aromatic Precursors in Hanseniaspora: A Source of Natural Bioactive Compounds.

FEMS Yeast Res

September 2025

Enology and Fermentation Biotechnology Area, Department of Science and Food Technology. Faculty of Chemistry, Universidad de la Republica. Montevideo, Uruguay.

Hanseniaspora species are among the most prevalent yeasts found on grapes and other fruits, with a growing role in wine fermentation due to their distinctive metabolic profiles. This review focuses on the functional divergence within the genus, particularly between the fast-evolving fruit clade and the slow-evolving fermentation clade. While species in the fruit clade often exhibit limited fermentation capacity with interesting enzymatic activity, members of the fermentation clade-especially H.

View Article and Find Full Text PDF

Archimedean spirals are architectural motifs that are found in nature. The facial asymmetry of amphiphilic molecules or macromolecules has been a key parameter in the preparation of these well-organized two-dimensional nanostructures in the laboratory. This facial asymmetry is also present in the helical grooves of chiral helical substituted poly(phenylacetylene)s (PPAs) and poly(diphenylacetylene)s (PDPAs), making them excellent candidates for self-assembly into 2D Archimedean nanospirals or nanotoroids.

View Article and Find Full Text PDF

Multi-layered and orthogonal recognition is an excellent route to controlled molecular complexity. Here we report a series of heteroleptic complexes where two ligands pair together at a palladium(II) metal centre in complementary fashion and with orthogonality to others pairs. This complementarity is driven in part through hydrogen-bonding acceptor or donor sites proximal to the coordination domain (either DD:AA or AD:DA).

View Article and Find Full Text PDF