Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

High-dimensional single-cell data analysis is crucial for understanding complex biological interactions, yet conventional dimensionality reduction methods (DRMs) often fail to preserve both global and local structures. Existing DRMs, such as t-distributed Stochastic Neighbor Embedding (t-SNE), Uniform Manifold Approximation and Projection (UMAP), Principal Component Analysis (PCA), and Potential of Heat-diffusion for Affinity-based Transition Embedding (PHATE), optimize different visualization objectives, resulting in trade-offs between cluster separability, spatial organization, and temporal coherence. To overcome these limitations, we introduce GIBOOST, an AI-driven framework that integrates outputs from multiple DRMs using a Bayesian framework and an optimized autoencoder. GIBOOST systematically selects and integrates the two most informative DRMs by evaluating key visualization features, including separability, spatial continuity, uniformity, cellular dynamics, and cluster sensitivity. Rather than prioritizing a single DRM, it identifies the optimal combination that maximizes clustering sensitivity (GI) while preserving biologically relevant spatial and temporal structures. This integration is further refined through a GI-optimized autoencoder, which optimizes the joint distribution of GI, neuron count, and batch size effects to improve visualization quality. We demonstrate GIBOOST's efficacy across multiple dynamic biological processes, including epithelial-mesenchymal transition, CiPSC reprogramming, spermatogenesis, and placental development. Compared to nine individual DRMs, GIBOOST enhances clustering sensitivity and biological relevance by ~30%, enabling more accurate interpretation of differentiation trajectories and cell-cell interactions. When applied to a large single-cell RNA-seq dataset (~400 000 cells, 28 cell types, seven placental regions), GIBOOST uncovers novel immune-placenta interactions, providing deeper insights into cross-tissue communication during pregnancy. By improving both the visualization and interpretability of high-dimensional data, GIBOOST serves as a powerful tool for computational systems biology, enabling a more accurate exploration of complex cellular systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12371410PMC
http://dx.doi.org/10.1093/bib/bbaf415DOI Listing

Publication Analysis

Top Keywords

high-dimensional data
8
separability spatial
8
clustering sensitivity
8
enabling accurate
8
giboost
6
visualization
5
drms
5
boosting data
4
data interpretation
4
interpretation giboost
4

Similar Publications

Hopfions-higher-dimensional topological quasiparticles with sophisticated 3D knotted spin textures discovered in condensed matter and photonic systems-show promise in high-density data storage and transfer. Here, we present crystalline structures of hopfions lying in space-time constructed by spatiotemporally structured light. Practical methodologies using bichromatic structured light beams or dipole arrays to assemble 1D and higher dimensional hopfion lattices are proposed, and a technique for tailoring topological orders is elucidated.

View Article and Find Full Text PDF

Cachexia, the loss of skeletal muscle mass and function with cancer, contributes to reduced life quality and worsened survival. Skeletal muscle fibrosis leads to disproportionate muscle weakness; however, the role of infiltrating immune cells and fibro-adipogenic progenitors (FAPs) in cancer-induced muscle fibrosis is not well understood. Using the C26 model of cancer cachexia, we sought to examine the changes to skeletal muscle immune cells and FAPs which contribute to excessive extracellular matrix (ECM) collagen deposition.

View Article and Find Full Text PDF

Motivation: Drug repositioning presents a streamlined and cost-efficient way to expand the range of therapeutic possibilities. Drugs with human genetic evidence are more likely to advance successfully through clinical trials towards FDA approval. Single gene-based drug repositioning methods have been implemented, but approaches leveraging a broad spectrum of molecular signatures remain underexplored.

View Article and Find Full Text PDF

Summary: Causal mediation analysis investigates the role of mediators in the relationship between exposure and outcome. In the analysis of omics or imaging data, mediators are often high-dimensional, presenting challenges such as multicollinearity and interpretability. Existing methods either compromise interpretability or fail to effectively prioritize mediators.

View Article and Find Full Text PDF

The integration of multimodal single-cell omics data is a state-of-art strategy for deciphering cellular heterogeneity and gene regulatory mechanisms. Recent advances in single-cell technologies have enabled the comprehensive characterization of cellular states and their interactions. However, integrating these high-dimensional and heterogeneous datasets poses significant computational challenges, including batch effects, sparsity, and modality alignment.

View Article and Find Full Text PDF