Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tumor organoids were modeled to mimic culture conditions, allowing tumor-derived tissue cells or isolated and purified tumor stem cells to self-assemble into 3D preclinical models that are similar to tissues and organs . Compared with traditional models, tumor organoids not only resemble parental tumors in histology and genomics, capturing their heterogeneity and drug response, but also provide an efficient platform for long-term culture, maintaining genetic stability and enabling gene manipulation. Therefore, tumor organoids have unique advantages in cancer drug resistance research. The paper covers: (1) Modeling methods of epithelial and non-epithelial tumor organoids, with special emphasis on the modeling of drug-resistant organoids; (2) Their use in drug resistance research, split into i. Therapeutic exploration (drug testing and screening) and ii. Mechanism investigation (use drug-resistant organoids to study drug resistance), including methods and findings from various teams.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12366422PMC
http://dx.doi.org/10.20517/cdr.2025.34DOI Listing

Publication Analysis

Top Keywords

tumor organoids
20
drug resistance
16
modeling methods
8
drug-resistant organoids
8
tumor
7
organoids
7
drug
6
methods tumor
4
organoids application
4
application tumor
4

Similar Publications

In oxaliplatin-resistant gastric cancer (GC), multi-omics profiling combined with organoid libraries reveals altered metabolic pathways associated with chemoresistance. We identify a novel lactylation modification at K115 of Poly(RC)-binding protein 2 (PCBP2K115la), which confers functional oxaliplatin resistance. Mechanistic studies demonstrate that the long non-coding RNA BASP1-AS1 assembles a complex containing Unc-51 Like Autophagy Activating Kinase 1 (ULK1) and lactate dehydrogenase A (LDHA), thereby activating LDHA enzymatic activity to increase lactate production.

View Article and Find Full Text PDF

Novel Thioredoxin reductase 1 inhibitor BS1801 relieves treatment resistance and triggers endoplasmic reticulum stress by elevating reactive oxygen species in glioma.

Redox Biol

August 2025

Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, No.119 South 4th Ring Road West, Beijing, China; Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China; Beijing Engineering Research Center of Target

Glioma patients will inevitably develop resistance to temozolomide (TMZ) leading to tumor recurrence. By comparing genomic differences between primary and recurrent glioma patients, Thioredoxin reductase 1 (TrxR1) was identified as a crucial role in TMZ resistance. Glioma cells elevate the expression level of TXNRD1 to against TMZ-induced reactive oxygen species (ROS), thereby conferring TMZ resistance.

View Article and Find Full Text PDF

Ewing sarcoma (EwS) is an aggressive bone and soft tissue cancer affecting adolescents and young adults. In vitro and in vivo models of EwS have been instrumental in advancing our understanding of EwS biology and essential in evaluating potential therapies, particularly for metastatic or relapsed disease where effective treatment options remain limited. Through an international collaborative effort between the Children's Oncology Group (COG) Bone Tumor Committee and the Euro Ewing Consortium (EEC), we review the current landscape of preclinical modeling used in EwS research encompassing both in vitro (cell lines and tumor organoids) and in vivo (mouse and non-mammalian xenografts) model systems.

View Article and Find Full Text PDF

Background/aims: Patient-derived organoids (PDOs) are promising preclinical models that replicate critical tumor features. However, intratumoral heterogeneity challenges the clinical utility of PDOs, especially in capturing diverse tumor cell subpopulations.

Methods: Single-cell transcriptomics was used to analyze PDOs from distinct sites within a single gastric cancer tumor, aiming to assess their ability to reflect intratumoral heterogeneity.

View Article and Find Full Text PDF

Traditional cancer research generally utilizes commercial immortalized cancer cell lines cultivated in two‑dimensional (2D) culture systems. However, as cell‑cell/cell‑matrix interactions and the microenvironment cannot be explored , 2D cell culture models inadequately replicate the phenotype and physiology of original tissues. Therefore, three‑dimensional (3D) cell culture technologies, such as organoids, which present potential for mimicking the features of primary solid tumors , may be useful in cancer research.

View Article and Find Full Text PDF