98%
921
2 minutes
20
Lipid nanoparticles (LNPs) are critical for the delivery of drugs and nucleic acids. However, current mRNA-LNP formulations require stringent freezing for storage, which limits their global distribution. Our previous studies demonstrated that optimizing the lipid type or molar ratio of Comirnaty-type mRNA-LNPs could enhance their lyophilization stability, thus improving their long-term storage stability under mild conditions. This study aims to enhance the storage stability of Spikevax-type mRNA-LNPs by optimizing lipid compositions and utilizing lyophilization for storage at 4°C. Fifteen mRNA-LNP formulations were evaluated for their physicochemical properties and transfection efficiency (TE) in human embryonic kidney (HEK)-293T cells using the I-optimal design of mixture experiments. Mathematical models were developed to predict the relationships among encapsulation efficiency, transfection performance and lipid ratios. The optimized mRNA-LNP formulation (N4), with a 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)-to-cholesterol ratio of 0.36, exhibited superior stability and TE after lyophilization. N4 outperformed the original Spikevax formulation in several cell lines, including eye-derived ARPE-19 cells and lung-derived A549 cells. , N4 demonstrated high TE in the spleen of C57BL/6 mice both before and after lyophilization, with no signals observed in the kidneys, heart or eyes. These findings suggest that the optimized N4 formulation offers a robust, stable and efficient delivery system for gene therapy and vaccines, potentially overcoming the storage limitations of current Spikevax-type mRNA-LNPs and broadening their therapeutic applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365600 | PMC |
http://dx.doi.org/10.1093/rb/rbaf023 | DOI Listing |
Nucleic Acids Res
September 2025
Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States.
Supercoiled (Sc) circular DNA, such as plasmids, are essential in molecular biology and hold strong therapeutic potential. However, they are typically produced in Escherichia coli, resulting in bacterial methylations, unnecessary sequences, and contaminants that hinder certain applications including clinical uses. These limitations could be avoided by synthesizing plasmids entirely in vitro, but synthesizing high-purity Sc circular DNA biochemically remains a significant technical challenge.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China. Electronic address:
Quantum dots, with their superior intrinsic fluorescence and photostability, are emerging as a promising option for cancer gene therapy, diagnosis, and imaging. However, low gene delivery efficiency, insufficient targeting, and responsiveness remain challenges. To address these issues, PEI-based carbon quantum dots (CPNCs) were constructed by crosslinking polyethylenimine quantum dots (PQDs) with carbon quantum dots (CQDs) via disulfide bonds.
View Article and Find Full Text PDFBiomaterials
September 2025
Department of Biomedical Engineering, Program in Genetic Drug Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. Electronic address:
Modular lipid nanoparticles (LNPs) are a promising platform to deliver mRNA to various tissues and cells. Optimization of LNPs for hepatic and extrahepatic tissues often involves substitution of helper lipids or addition of novel lipids not found in conventional four-component LNPs. Among the lipids that comprise LNPs, the functional contributions of phospholipids (PLs) in selective organ targeting (SORT) LNPs remain poorly understood.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
June 2025
Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
Lipid nanoparticles (LNPs) are lead non-viral vectors for delivering nucleic acids. LNPs can efficiently encapsulate nucleic acids, protect them from degradation, enhance cellular uptake and induce endosome escape, which show high transfection efficiency and low immunogenicity. In this review, we first introduce the LNP components, highlighting their critical roles in encapsulation, stability, delivery efficiency, and tissue tropism.
View Article and Find Full Text PDFPlant Cell Environ
September 2025
State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry
CRISPR ribonucleoprotein (RNP)-mediated genome editing offers a transgene-free platform for precise genetic modification in diverse herbaceous and tree species, including rice, wheat, apple, poplar, oil palm, rubber tree and grapevine. However, its application in woody plants faces distinct challenges, notably inefficient delivery and regeneration difficulties, particularly in species such as bamboo. While some of these issues also occur in herbaceous plants, they are often significantly more complex in woody species due to factors such as intricate cell wall architecture, widespread recalcitrant genotypes and inherent limitations of current delivery platforms.
View Article and Find Full Text PDF