98%
921
2 minutes
20
Water-soluble actinide-masking ligands are fundamentally important for achieving efficient lanthanide/actinide separation and for the development of water-soluble f-block complexes for bioimaging and radiopharmaceutical applications. However, the underlying design principles remain largely elusive, particularly in achieving a fine balance between ligand water solubility and metal affinity/selectivity. In this study, it is demonstrated that for the well-established phenanthroline diimine ligand framework, topological modifications can preserve water solubility but introduce significant rotational energy barriers. These barriers, in turn, diminish both the metal-binding affinity and selectivity. Conversely, non-coordinating substituents play an unexpected role in modulating water solubility. Specifically, the incorporation of methylthio-flanking groups is found to significantly impair the ligand's aqueous solubility. A combination of solution- and solid-state coordination studies is employed to elucidate how structural modifications influence ligand-metal interactions. Additionally, DFT calculations provided molecular-level insights into the relationship between chemical structure, water solubility, and coordination behavior. This work offers valuable design guidelines for the development of hydrophilic ligands, with implications for selective f-block element separation and the formulation of stable, water-soluble f-block complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/advs.202512292 | DOI Listing |
Pestic Biochem Physiol
November 2025
Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones científicas, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain. Electronic address:
Essential oils (EOs) are a promising alternative to conventional pesticides, but some challenges like high volatility, poor water solubility, and rapid degradation limit their use in Integrated Pest Management (IPM). To overcome these limitations, this study aimed to develop garlic, eucalyptus, and clove EO-based nano-emulsions (EO-NEs) in a bait treatment format through the high-pressure microfluidization technique and investigated the biological activities against Ceratitis capitata. In addition, the adverse effects of the most promising nano-emulsion were evaluated towards a non-target parasitoid Anagaspis daci.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Department of chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, USA. Electronic address:
Background: Carbonate esters are polar aprotic solvents that can be used to replace polar solvents: methanol, acetonitrile, or even apolar solvents in the mobile phases for liquid chromatography. Dimethyl, diethyl, and propylene carbonates (DMC, DEC, and PC) are not fully soluble in water.
Results: Twelve volume phase diagrams of water, the three carbonates, and methanol, ethanol, propanol, and acetonitrile were determined.
Photodiagnosis Photodyn Ther
September 2025
Laboratory of Applied Microbiology Department of Dental Materials and Prosthodontics, Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Odontologia de Araraquara, Araraquara, SP, Brazil. Electronic address:
Objective: To evaluate whether pretreatment strategies targeting the extracellular matrix (ECM), such as DNase I and low-frequency ultrasound, enhance the efficacy of successive antimicrobial photodynamic therapy (aPDT) against Candida albicans biofilms and to assess the effects on biofilm components.
Methods: Forty-eight-hour C. albicans (ATCC 90028) biofilms were treated under four conditions: (I) aPDT [Photodithazine (PDZ) (25 mg/L) for 20 min + Light-Emitting Diode (LED) (660 nm, 18 J/cm²)], (II) DNase+aPDT [5 min with 20 U/mL DNase I before aPDT], (III) sonication+aPDT [7 W, 170-190 J before aPDT], (IV) Dn+So+aPDT.
Int J Pharm
September 2025
Department of Pharmaceutics and Biopharmaceutics, Kiel University, Kiel, Germany. Electronic address:
Indomethacin is a poorly soluble weak acid and a widely used model drug in enabling formulations. When using microdialysis for sampling of indomethacin from a buffer containing calcium, we observed the formation of nanoparticles of a poorly water-soluble indomethacin calcium salt. The nanoparticles were not detected during solubility experiments where filtration had been used to separate the solid phase because the nanoparticles were unusually small in size, less than 2 nm in diameter as determined by DLS.
View Article and Find Full Text PDFJ Contam Hydrol
September 2025
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31-4, 119071 Moscow, Russia.
Lead is an extremely hazardous pollutant that poses a severe threat to the ecosystem. It enters the atmosphere in the form of nano- and microparticles and is then carried by wind and water. These particles easily dissolve in water, turning into ions which are easily absorbed by living organisms.
View Article and Find Full Text PDF