Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

DNA replication initiation is orchestrated in bacteria by the replication initiator DnaA. Two models for regulation of DnaA activity in Escherichia coli have been proposed: the switch between an active and inactive form, and the titration of DnaA on the chromosome. Although proposed decades ago, experimental evidence of a titration-based control mechanism is still lacking. Here, we first identified a conserved high-density region of binding motifs near the origin of replication, an advantageous trait for titration of DnaA. We then investigated the mobility of DnaA by visualising single proteins inside single cells of wild-type and deletion mutants E. coli strains, while monitoring cellular size and DNA content. Our results indicate that the chromosome of E. coli controls the free amount of DnaA in a growth rate-dependent fashion. Moreover, they address long-standing questions on the relevance of DnaA titration in stabilising DNA replication by preventing re-initiation events during slow growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12371093PMC
http://dx.doi.org/10.1038/s41467-025-63147-1DOI Listing

Publication Analysis

Top Keywords

escherichia coli
8
replication initiator
8
dnaa
8
initiator dnaa
8
dna replication
8
titration dnaa
8
replication
5
coli replication
4
dnaa titrated
4
titrated chromosome
4

Similar Publications

Study of Bacteriostasis of Kaempferide on Foodborne Pathogenic Bacteria by Indirect Determination of Capillary Electrophoresis.

Electrophoresis

September 2025

Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, and Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China.

Foodborne pathogenic bacteria always threaten human health. Flavonoids are commonly used in antibacterial applications. Studying the antibacterial effect of flavonoids on bacteria is significant.

View Article and Find Full Text PDF

Background: Bacillus thuringiensis Cry toxins are well known for their insecticidal properties, primarily through the formation of ion-leakage pores via α4-α5 hairpins. His178 in helix 4 of the Cry4Aa mosquito-active toxin has been suggested to play a crucial role in its biotoxicity.

Objective: This study aimed to investigate the functional importance of Cry4Aa-His178 through experimental and computational analyses.

View Article and Find Full Text PDF

Objectives: This study focused on synthesizing and characterizing novel thiosemicarbazide derivatives containing a 1,2,4-triazole moiety and evaluating their antimicrobial activity against several bacterial strains. The research aimed to identify key structural features that enhance antimicrobial efficacy through structure-activity relationship analysis and identify the minimum inhibitory concentration (MIC) of the most potent compounds to assess their potential for further development as antimicrobial agents.

Materials And Methods: Nine novel thiosemicarbazide derivatives containing a 1,2,4-triazole moiety were synthesized by reacting 1,2,4-triazole derivatives with thiosemicarbazide precursors, and the products were characterized using infrared spectroscopy, proton nuclear magnetic resonance (H-NMR), carbon-13 nuclear magnetic resonance (C-NMR) spectroscopy, and elemental analysis.

View Article and Find Full Text PDF

Current antithrombotic therapies face dual constraints of bleeding complications and monitoring requirements. Although natural hirudin provides targeted thrombin inhibition, its clinical adoption is hindered by sourcing limitations. This study developed a recombinant hirudin variant HMg (rHMg) with enhanced anticoagulant activity through genetic engineering and established cost-effective large-scale production methods.

View Article and Find Full Text PDF

Adenosylcobalamin-dependent ethanolamine ammonia-lyase (EAL) undergoes irreversible inactivation when incubated in the absence of substrate or in the presence of certain substrates or pseudosubstrates. We have previously identified Escherichia coli EutA as an EAL-reactivase (or reactivating factor). Herein, untagged and tagged EutAs were purified to homogeneity.

View Article and Find Full Text PDF