Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Hydrogels have emerged as versatile therapeutic platforms with immense potential for treating various diseases, due to their tunable properties and biocompatibility. Recent innovations, including injectable, self-assembling, and bioadhesive hydrogels, have broadened their biomedical applications, driven by advancements in materials chemistry. This review systematically examines the role of chemical principles in designing and customizing therapeutic hydrogels, with a focus on hydrogelation mechanisms, swelling ratios, mechanical properties, and biological interactions. By highlighting key studies in this field, this review explores how chemical chain modifications, cross-linking strategies, and cargo delivery systems have been tailored to achieve diverse functions, such as drug depots, wound dressings, antiadhesive barriers, and regenerative scaffolds. Addressing the gap in comprehensive analyses, this review underscores the integration of chemical design principles to optimize hydrogel properties for targeted therapies and discusses future opportunities to advance therapeutic hydrogel technology for a wide range of biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.chemrev.5c00182 | DOI Listing |