Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

It is newly proposed that the presence of the near dipole-dipole (NDD) interaction effect in an optically dense atomic ensemble may be very useful for controlling high-precision atom localization. In the present work based on observing the NDD effect-induced space-dependent-absorption of a weak probe field operating in a partially closed four-level Y-type atomic system, we have shown the NDD parameter being an efficient control knob along with the other system parameters for easier optimization of the localization pattern with enhanced detection probability in three-dimensional (3D) space. Controlling localization patterns at lower and larger values of NDD parameter is discussed at different physical conditions. In the present model, we mention that the maximum detection probability of the atom is found with the spatial resolution limit having localization volume nearly of the order of [Formula: see text]. The efficacy of the present model is in finding its application in atom nanolithography and atom imaging, which are important for quantum information processing and technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12368268PMC
http://dx.doi.org/10.1038/s41598-025-94788-3DOI Listing

Publication Analysis

Top Keywords

atom localization
8
ndd parameter
8
detection probability
8
atom
5
localization
5
dipole-dipole interaction
4
interaction induced
4
induced control
4
control high-precision
4
high-precision three-dimensional
4

Similar Publications

Spin Qubit Properties of the Boron-Vacancy/Carbon Defect in the Two-Dimensional Hexagonal Boron Nitride.

J Phys Condens Matter

September 2025

Department of Physics, Tuskegee University, 1200 West Montgomery Road, 106 Chappie James, Tuskegee, Alabama, 36088-1920, UNITED STATES.

Spin qubit defects in two-dimensional materials have a number of advantages over those in three-dimensional hosts including simpler technologies for the defect creation and control, as well as qubit accessibility. In this work, we select the VBCB defect in the hexagonal boron nitride (hBN) as a possible optically controllable spin qubit and explain its triplet ground state and neutrality. In this defect a boron vacancy is combined with a carbon dopant substituting the closest boron atom to the vacancy.

View Article and Find Full Text PDF

Two-dimensional (2D) materials offer a valuable platform for manipulating and studying chemical reactions at the atomic level, owing to the ease of controlling their microscopic structure at the nanometer scale. While extensive research has been conducted on the structure-dependent chemical activity of 2D materials, the influence of structural transformation during the reaction has remained largely unexplored. In this work, we report the layer-dependent chemical reactivity of MoS during a nitridation atomic substitution reaction and attribute it to the rearrangement of Mo atoms.

View Article and Find Full Text PDF

RNA G-quadruplexes (rG4s) are emerging as vital structural elements involved in processes like gene regulation, translation, and genome stability. Found in untranslated regions of messenger RNAs (mRNAs), they influence translation efficiency and mRNA localization. Additionally, rG4s of long noncoding RNAs and telomeric RNA play roles in RNA processing and cellular aging.

View Article and Find Full Text PDF

Engineering Brønsted Acidic Microenvironments via Strong Metal-Support Interaction in Single-Atom Pd/CeO for Acid-Free Acetalization Catalysis.

Inorg Chem

September 2025

College of Chemistry and Materials Science, The key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materia

Conventional acid-catalyzed acetalization faces significant challenges in catalyst recovery and poses environmental concerns. Herein, we develop a CeO-supported Pd single-atom catalyst (Pd/CeO) that eliminates the reliance on liquid acids by creating a localized H-rich microenvironment through heterolytic H activation. X-ray absorption near-edge structure and extended X-ray absorption fine structure analyses confirm the atomic dispersion of Pd via Pd-O-Ce coordination, while density functional theory (DFT) calculations reveal strong metal-support interactions (SMSI) that facilitate electron transfer from CeO oxygen to Pd, downshifting the Pd d-band center and optimizing H activation.

View Article and Find Full Text PDF

A novel aggregation-induced emission (AIE) system with superior performance was successfully developed through local chemical modification from thiophene to thiophene sulfone. This approach, leveraging easily accessible tetraphenylthiophene precursors, dramatically enhances the photophysical properties in a simple oxidation step. Notably, the representative 2,3,4,5-tetraphenylthiophene sulfone (3c) demonstrates remarkable solid-state emission characteristics with a fluorescence quantum yield of 72% and an AIE factor of 240, substantially outperforming its thiophene analog.

View Article and Find Full Text PDF