A model for propagation of RNA structural memory through biomolecular condensates.

Nat Cell Biol

Molecular Medicine Program, Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We hypothesize that stress-induced RNA structural changes, stabilized by RNA-binding proteins in biomolecular condensates, propagate via conformational catalysis in a prion-like manner across generations. Our model suggests that RNA structure encodes heritable memory, and its roles should be explored in epigenetic inheritance, evolutionary adaptation and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12414476PMC
http://dx.doi.org/10.1038/s41556-025-01736-4DOI Listing

Publication Analysis

Top Keywords

rna structural
8
biomolecular condensates
8
model propagation
4
propagation rna
4
structural memory
4
memory biomolecular
4
condensates hypothesize
4
hypothesize stress-induced
4
stress-induced rna
4
structural changes
4

Similar Publications

Manipulating Zika virus RNA tertiary structure for developing tissue-specific attenuated vaccines.

EMBO Mol Med

September 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, 100071, Beijing, China.

Traditional live attenuated vaccines (LAVs) are typically developed through serial passaging or genetic engineering to introduce specific mutations or deletions. While viral RNA secondary or tertiary structures have been well-documented for their multiple functions, including binding with specific host proteins, their potential for LAV design remains largely unexplored. Herein, using Zika virus (ZIKV) as a model, we demonstrate that targeted disruption of the primary sequence or tertiary structure of a specific viral RNA element responsible for Musashi-1 (MSI1) binding leads to a tissue-specific attenuation phenotype in multiple animal models.

View Article and Find Full Text PDF

RNA-protein interactions critically regulate gene expression and cellular processes, yet their comprehensive mapping remains challenging due to their structural diversity. We introduce PRIM-seq (protein-RNA interaction mapping by sequencing), a method for concurrent de novo identification of RNA-binding proteins and their associated RNAs. PRIM-seq generates unique chimeric DNA sequences by proximity ligation of RNAs with protein-linked DNA barcodes, which are subsequently decoded through sequencing.

View Article and Find Full Text PDF

The genus Flapocephalus Deshmukh, 1979, is a little-known group of lecanicephalidean cestodes parasitizing cowtail rays (genus Pastinachus Rüppell) mainly in the Indo-Pacific region. Since the erection of the genus, with Flapocephalus trygonis Deshmukh, 1979, as the type species, and the description of a second species, Flapocephalus saurashtri Shinde and Deshmukh, 1979, both from Pastinachus sephen (Fabricius) from India, reports of this genus have been restricted mainly to brief mentions or discussion of its validity and taxonomic placement. More recently, phylogenetic analyses based on molecular sequence data that included specimens of Flapocephalus have supported Flapocephalus as a distinct genus allied with the Polypocephalidae Meggitt, 1924.

View Article and Find Full Text PDF

Aptamers as target-specific recognition elements in drug delivery.

Adv Drug Deliv Rev

September 2025

Biochemistry, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Molecular, Cellular, and Developmental Biology, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Chemistry, CUNY Gradua

Targeted drug delivery significantly enhances therapeutic efficacy across various diseases, particularly in cancer treatments, where conventional approaches such as chemotherapy and radiotherapy often cause severe side effects. In this context, nucleic acid aptamers-short, single-stranded DNA or RNA oligonucleotides capable of binding specific targets with high affinity-have emerged as promising tools for precision drug delivery and therapy. Aptamers can be selected against whole, living cells using SELEX and chemically modified for diverse applications.

View Article and Find Full Text PDF

Bovine coronavirus Nsp14 protein promotes viral replication by degrading TRAF3 to inhibit interferon production.

Vet Microbiol

September 2025

Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou Unive

Bovine coronavirus (BCoV), a member of the Betacoronavirus genus, causes severe calf gastroenteritis and respiratory disease, resulting in a significant loss of livestock. Coronavirus non-structural protein 14 (nsp14) is involved in viral RNA replication and modification and subverts host immune regulatory pathways to facilitate immune evasion. In this study, we demonstrated that BCoV nsp14 mediates TNF receptor-associated factor 3 (TRAF3) degradation through the coordinated targeting of the ubiquitin-proteasome and autophagy-lysosomal pathways, thereby potentiating viral replication.

View Article and Find Full Text PDF