98%
921
2 minutes
20
An enchondroma is a benign neoplasm of mature hyaline cartilage that proliferates from the medullary cavity toward the cortical bone. This results in the formation of a significant endogenous mass within the medullary cavity. Although enchondromas are predominantly asymptomatic, they may exhibit various clinical manifestations contingent on the size of the lesion, its localization, and the characteristics observed on radiological imaging. This study aimed to identify and present cases of bone tissue enchondromas to field specialists as preliminary data. In this study, authentic X-ray radiographs of patients were obtained following ethical approval and subjected to preprocessing. The images were then annotated by orthopedic oncology specialists using advanced, state-of-the-art object detection algorithms trained with diverse architectural frameworks. All processes, from preprocessing to identifying pathological regions using object detection systems, underwent rigorous cross-validation and oversight by the research team. After performing various operations and procedural steps, including modifying deep learning architectures and optimizing hyperparameters, enchondroma formation in bone tissue was successfully identified. This achieved an average precision of 0.97 and an accuracy rate of 0.98, corroborated by medical professionals. A comprehensive study incorporating 1055 authentic patient data from multiple healthcare centers will be a pioneering investigation that introduces innovative approaches for delivering preliminary insights to specialists concerning bone radiography.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12368237 | PMC |
http://dx.doi.org/10.1038/s41598-025-07978-4 | DOI Listing |
BMC Oral Health
September 2025
Oral and Maxillofacial Radiology Department, Cairo university, Cairo, Egypt.
Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.
Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.
BMC Psychiatry
September 2025
Department of Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.
View Article and Find Full Text PDFBMC Musculoskelet Disord
September 2025
Department of Clinical Sciences at Danderyds Hospital, Department of Orthopedic Surgery, Karolinska Institutet, Stockholm, 182 88, Sweden.
Background: This study evaluates the accuracy of an Artificial Intelligence (AI) system, specifically a convolutional neural network (CNN), in classifying elbow fractures using the detailed 2018 AO/OTA fracture classification system.
Methods: A retrospective analysis of 5,367 radiograph exams visualizing the elbow from adult patients (2002-2016) was conducted using a deep neural network. Radiographs were manually categorized according to the 2018 AO/OTA system by orthopedic surgeons.
J Cancer Res Clin Oncol
September 2025
Department of Surgery, Mannheim School of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.
Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.
Sci Rep
September 2025
Fukushima Renewable Energy Institute, Koriyama, Japan.
Ultra-fast charging stations (UFCS) present a significant challenge due to their high power demand and reliance on grid electricity. This paper proposes an optimization framework that integrates deep learning-based solar forecasting with a Genetic Algorithm (GA) for optimal sizing of photovoltaic (PV) and battery energy storage systems (BESS). A Gated Recurrent Unit (GRU) model is employed to forecast PV output, while the GA maximizes the Net Present Value (NPV) by selecting optimal PV and BESS sizes tailored to weekday and weekend demand profiles.
View Article and Find Full Text PDF