Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Individuals with neurogenic bladder are particularly susceptible to both chronic bacterial colonization of the bladder and urinary tract infections (UTIs). Neurogenic bladder can arise from a variety of diseases such as diabetes, spinal cord injuries, and spina bifida. To study the ecological and evolutionary dynamics of the microbiome in neurogenic bladder, we developed a longitudinal cohort of 77 children and young adults with spina bifida from two medical centers. We used enhanced urine culture, 16S rRNA sequencing, and whole genome sequencing to characterize the microbial composition of urine and fecal samples. In addition to prospective sample collection, we retrieved prior bacterial isolates from enrolled patients from Vanderbilt's clinical microbial biobank, MicroVU. This allowed us to compare bacterial isolates from the same patients over a period of five years. Urine samples were characterized by high abundance of urinary pathogens, such as and . From longitudinal isolates from individual patients, we identified two common patterns of urinary tract colonization. We observed either the rapid cycling of strains and/or species, often following antibiotic treatment, or we observed the persistence of a single strain across timepoints. Neither persistence of a strain nor colonization with a new strain or species was associated with increased antibiotic resistance. Rather, in paired longitudinally collected strains from the same patients, mutations were identified in genes that code for cell envelope components associated with immune or phage evasion. Experimental testing revealed that O-antigen/LPS biosynthesis mutations confer protection from the immune system while altering susceptibility to phage predation, reflecting a fitness trade-off. We argue that this unparalleled cohort offers the opportunity to identify mechanisms of bacterial adaptation to the urinary tract that can be exploited in future therapeutic approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12363967PMC
http://dx.doi.org/10.1101/2025.08.14.669717DOI Listing

Publication Analysis

Top Keywords

neurogenic bladder
16
urinary tract
12
spina bifida
8
bacterial isolates
8
bladder
5
patients
5
unmasking pathogen
4
pathogen traits
4
traits chronic
4
colonization
4

Similar Publications

Neurogenic bladder and lower urinary tract (LUT) dysfunctions encompass a wide variety of urinary disorders resulting from nervous system impairments. Unfortunately, conventional treatments are still limited and can have significant complication rates, especially when stent implantations or other surgical procedures are involved. Therefore, there is a critical need to develop novel therapeutic strategies and pharmacological approaches to address these challenging urological conditions.

View Article and Find Full Text PDF

Urinary dysfunction caused by central nervous system or peripheral nerve disease represents a significant global medical and social problem. Neurologic abnormalities, including traumatic brain injury (TBI), stroke, Alzheimer's disease, and Parkinson's disease, have been identified as potential risk factors for neurogenic urinary tract dysfunction. The relationship between TBI and neurogenic lower urinary tract dysfunction (NLUTD) will be introduced in this article, with the mechanisms, clinical manifestations, diagnostic methods, and treatment strategies of NLUTD after TBI being evaluated as well, which provides a reference for the diagnosis and treatment.

View Article and Find Full Text PDF

Many patients with injuries to their central nervous system, especially those who have had a stroke or a spinal cord injury, have neurogenic voiding dysfunction. It happens when patients can't control their bladder voluntarily, which can make them feel urgency, experience leaks, or have trouble emptying their bladder. If not treated right away, it can cause infections, damage to the bladder, or even kidney problems over time.

View Article and Find Full Text PDF

Spinal cord injury (SCI) frequently leads to neurogenic lower urinary tract dysfunction, for which appropriate bladder management is essential. While clinical care relies on continuous low-pressure drainage in the acute phase, rat models commonly use twice-daily manual bladder expression-a method known to generate high intravesical pressures and retention. This study evaluated the impact of this standard practice on bladder tissue remodeling by comparing it to continuous drainage via high vesicostomy in a rat SCI model.

View Article and Find Full Text PDF