98%
921
2 minutes
20
Recent neurosurgery advancements include improved stereotactic targeting and increased electrode contacts. This study introduces a subject-specific, in silico modeling tool for optimizing electrode placement and maximizing coverage with a variety of devices. The basis for optimization is the inherent information patterns of field potentials derived from dipolar sources. The approach integrates subject-specific MRI data with finite element modeling (FEM) used to simulate the sensitivity of subdural and intracortical devices. Sensitivity maps, or lead fields, from these models enable the comparison of different electrode placements, contact sizes, contact configurations, and substrate properties, which are often overlooked factors. One tool is a genetic algorithm that optimizes electrode placement by maximizing information capacity. Another is a sparse sensor method, Sparse Electrode Placement for Input Optimization (SEPIO), that selects the best sensor subsets for accurate source classification. We demonstrate several use cases for clinicians, engineers, and researchers. Overall, these open-source tools offer a quantitative framework to juxtapose devices in one's neurosurgical armament or optimize device and contact placement. It may help users refine electrode coverage with low channel count devices and minimize invasive surgery burden. The study demonstrates that optimized electrode placement significantly improves the information capacity and signal quality of LFP recordings. The tools developed offer a valuable approach for refining neurosurgical techniques and enhancing the design of neural implants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12363811 | PMC |
http://dx.doi.org/10.1101/2025.04.25.650658 | DOI Listing |
BMC Psychiatry
September 2025
Department of Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.
View Article and Find Full Text PDFPLoS Comput Biol
September 2025
Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America.
Research into the mechanisms underlying neuromodulation by tES using in-vivo animal models is key to overcoming experimental limitations in humans and essential to building a detailed understanding of the in-vivo consequences of tES. Insights from such animal models are needed to develop targeted and effective therapeutic applications of non-invasive brain stimulation in humans. The sheer difference in scale and geometry between animal models and the human brain contributes to the complexity of designing and interpreting animal studies.
View Article and Find Full Text PDFAdv Mater
September 2025
Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea.
Wearable bioelectronics have advanced dramatically over the past decade, yet remain constrained by their superficial placement on the skin, which renders them vulnerable to environmental fluctuations and mechanical instability. Existing microneedle (MN) electrodes offer minimally invasive access to dermal tissue, but their rigid, bulky design-often 100 times larger and 10,000 times stiffer than dermal fibroblasts-induces pain, tissue damage, and chronic inflammation, limiting their long-term applicability. Here, a cell-stress-free percutaneous bioelectrode is presented, comprising an ultrathin (<2 µm), soft MN (sMN) that dynamically softens via an effervescent structural transformation after insertion.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, M5T 0S8, Canada.
Accurate brain signal recording and precise electrode placement are critical for the success of neuromodulation therapies such as deep brain stimulation (DBS). Addressing these challenges requires deep brain electrodes that provide high-quality, stable recordings while remaining compatible with high-resolution medical imaging modalities like magnetic resonance imaging (MRI). Moreover, such electrodes shall be cost-effective, easy to manufacture, and patient-compatible.
View Article and Find Full Text PDFChest
September 2025
Flinders Health and Medical Research Institute/Adelaide Institute for Sleep Health, Flinders University, Bedford Park, South Australia, Australia.
Background: Hypoglossal nerve stimulation (HNS) to treat obstructive sleep apnea (OSA) currently requires placement of a cuff or 'saddle' electrode around or adjacent to the hypoglossal nerve(s). Limitations for this therapy include cost, invasiveness, and variable efficacy.
Research Question: Can HNS applied via percutaneous implantation of a linear, multi-pair electrode array restore airflow to airway narrowing and/or obstruction, and improve airway collapsibility in people with OSA?
Study Design And Methods: Participants with OSA undergoing drug induced sleep endoscopy with propofol were instrumented with an epiglottic pressure catheter, nasal mask and pneumotachograph.