Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The Bronchial Provocation Test (BPT) is the gold standard for diagnosing airway hyperresponsiveness (AHR) in suspected asthma patients but is time-consuming and resource-intensive. This study explores the potential of baseline pulmonary function parameters, particularly small airway indices, in predicting AHR and develops a machine learning-based model to improve screening efficiency and reduce unnecessary BPT referrals.

Methods: This retrospective study analyzed baseline pulmonary function data and BPT results from Henan Provincial People's Hospital (May to September 2024). Data were randomly split into training (69.8%,  = 289) and validation (30.2%,  = 125) groups using R software (Version 4.4.1). The Least Absolute Shrinkage and Selection Operator (LASSO) was applied to identify the most predictive variables, and 10-fold cross-validation was used to determine the optimal penalty parameter ( = 0.023) to prevent overfitting. Model fit was evaluated using the Akaike Information Criterion (AIC), and a logistic regression model was constructed along with a nomogram.

Results: The optimal model (Model C, AIC = 310.44) included FEV1/FVC%, MEF75%, PEF%, and MMEF75-25%, which demonstrated superior discriminative capacity in both the training (AUC = 0.790, cut-off = 0.354, 95% CI: 0.724-0.760) and validation cohorts (AUC = 0.756, cut-off = 0.404, 95% CI: 0.600-0.814). In the validation cohort, multidimensional validation through calibration plots showed a slope of 0.883. The Net Reclassification Improvement (NRI) for Model C compared to other models was 0.169 (vs. Model A), 0.144 (vs. Model B), and 0.158 (vs. Model D). The Integrated Discrimination Improvement (IDI) and Decision Curve Analysis (DCA) indicated that Model C provided superior predictive performance and a significantly higher net benefit compared to the extreme curves. For instance, the 10th randomly selected patient in the validation cohort showed an 89.80% probability of AHR diagnosis, with a well-fitting model.

Conclusion: This study identifies MEF75%, MMEF75-25%, FEV1/FVC%, and PEF% as effective predictors of early airway hyperresponsiveness in suspected asthma patients. The machine learning-based predictive model demonstrates strong performance and clinical utility, offering potential as a visual tool for early detection and standardized treatment, thereby reducing the risk of symptom exacerbation, lung function decline, and airway remodeling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12358348PMC
http://dx.doi.org/10.3389/fmed.2025.1611683DOI Listing

Publication Analysis

Top Keywords

machine learning-based
12
airway hyperresponsiveness
12
baseline pulmonary
12
pulmonary function
12
model
11
early airway
8
function parameters
8
suspected asthma
8
asthma patients
8
validation cohort
8

Similar Publications

Background: Antiphospholipid syndrome (APS) is a major immune-related disorder that leads to adverse pregnancy outcomes (APO), including recurrent miscarriage, placental abruption, preterm birth, and fetal growth restriction. Antiphospholipid antibodies (aPLs), particularly anticardiolipin antibodies (aCL), anti-β2-glycoprotein I antibodies (aβ2GP1), and lupus anticoagulant (LA), are considered key biomarkers for APS and are closely associated with adverse pregnancy outcomes. This is a prospective observational cohort study to use machine learning model to predict adverse pregnancy outcomes in APS patients using early pregnancy aPL levels and clinical features.

View Article and Find Full Text PDF

The COVID-19 pandemic has exposed critical gaps in our management of systemic risks within complex, interconnected systems. This review examines 10 key areas where artificial intelligence (AI) and data analytics can significantly enhance pandemic preparedness, response, and recovery. Inadequate early warning systems, insufficient real-time data on resource needs, and the limitations of traditional epidemiological models in capturing complex disease dynamics are among the challenges analyzed.

View Article and Find Full Text PDF

A machine learning based dual-energy CT elemental decomposition method and its physical-biological impacts on carbon ion therapy.

Med Phys

September 2025

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China.

Background: Dual-energy computed tomography (DECT) enhances material differentiation by leveraging energy-dependent attenuation properties particularly for carbon ion therapy. Accurate estimation of tissue elemental composition via DECT can improve quantification of physical and biological doses.

Objective: This study proposed a novel machine-learning-based DECT (ML-DECT) method to predict the physical density and mass ratios of H, C, N, O, P, and Ca.

View Article and Find Full Text PDF

Early prediction of orthodontic gingival enlargement using S100A4: a biomarker-based risk stratification model.

Odontology

September 2025

Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.

Orthodontic-induced gingival enlargement (OIGE) affects approximately 15-30% of patients undergoing orthodontic treatment and remains largely unpredictable, often relying on subjective clinical assessments made after irreversible tissue changes have occurred. S100A4 is a well-characterized marker of activated fibroblasts involved in pathological tissue remodeling. This was a cross-sectional precision biomarker study that analyzed gingival tissue samples from three groups: healthy controls (n = 60), orthodontic patients without gingival enlargement (n = 31), and patients with clinically diagnosed OIGE (n = 61).

View Article and Find Full Text PDF

Sustainable urban development requires actionable insights into the thermal consequences of land transformation. This study examines the impact of land use and land cover (LULC) changes on land surface temperature (LST) in Ho Chi Minh city, Vietnam, between 1998 and 2024. Using Google Earth Engine (GEE), three machine learning algorithms-random forest (RF), support vector machine (SVM), and classification and regression tree (CART)-were applied for LULC classification.

View Article and Find Full Text PDF