Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Cold stress at the booting stage can seriously affect wheat growth, development and yield.

Methods: Therefore, this study employed integrated physiological, transcriptomic, proteomic and metabolomic approaches to examine the response of two wheat cultivars, Chuanmai 104 (CM104, cold-tolerant) and Chuanmai 42 (CM42, cold-sensitive), to cold stress at the booting stage.

Results: The viability of pollen in CM104 was less affected by low-temperature stress compared to CM42, ensuring a higher seed-setting rate in CM104. The young spike of CM104 also synthesized more osmoregulatory substances, endogenous hormones and higher antioxidant enzyme activities under the cold treatment compared to CM42. Transcriptome analysis identified 7,362 and 5,328 differentially expressed genes (DEGs) between control and cold-treated CM104 and CM42 spike samples, respectively. More DEGs, such as transcription factors, late embryogenesis abundant protein and hormone signalling transduction involved in the key regulatory pathways associated with cold tolerance were expressed in CM104. Proteomic and metabolomic analyses identified 173 differentially expressed proteins and 180 differentially accumulated metabolites between control and cold-treated CM104 spike samples, with some thought to enhance the cold acclimation of the variety. Integrative multi-omics analysis highlighted the critical roles of starch and sucrose, and glycerophospholipid metabolism in response to cold stress in CM104.

Discussion: This study uncovered the physiological changes, gene, protein and metabolite pathways involved in maintaining the osmotic balance and mitigating low-temperature stress in wheat spikes, and could serve as a crucial reference for selecting and breeding low-temperature tolerant wheat varieties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12358470PMC
http://dx.doi.org/10.3389/fpls.2025.1594676DOI Listing

Publication Analysis

Top Keywords

cold stress
16
multi-omics analysis
8
response cold
8
wheat cultivars
8
booting stage
8
stress booting
8
proteomic metabolomic
8
low-temperature stress
8
compared cm42
8
differentially expressed
8

Similar Publications

Polyethylene microplastic pollution drives quorum sensing-mediated enrichment of rhizosphere pathogens, resistance genes, and virulence factors genes.

J Hazard Mater

September 2025

State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Lanzhou Eco-Agriculture Experimental Research Station, Lanzhou 730000, China; Key Laboratory of Stress Physio

Microplastics are pervasive soil pollutants, yet their role in driving microbial risk in medicinal plant rhizospheres remains poorly understood. Using polyethylene microplastics (PE-MPs) as a model, this study investigated the dose-dependent effects of PE-MPs (0-1000 mg/kg) on the dynamics of antibiotic resistance genes (ARGs), biocide/metal resistance genes (BMRGs), virulence factor genes (VFGs), mobile genetic elements (MGEs), and human bacterial pathogens (HBPs) in the rhizosphere of Angelica sinensis. Results showed that PE-MPs exposure increased the abundance of these genes and pathogens while simplifying the host microbial community structure.

View Article and Find Full Text PDF

Background: Phrenic nerve injury during mediastinal tumor resection can lead to significant postoperative diaphragmatic dysfunction. Current intraoperative protection techniques are imprecise and lack real-time feedback. We aimed to develop and validate a quantifiable, multimodal neuroprotective strategy.

View Article and Find Full Text PDF

Most of the United States (US) population resides in cities, where they are subjected to the urban heat island effect. In this study, we develop a method to estimate hourly air temperatures at resolution, improving exposure assessment of US population when compared to existing gridded products. We use an extensive network of personal weather stations to capture the intra-urban variability.

View Article and Find Full Text PDF

Climatic challenges increasingly threaten global food security, necessitating crops with enhanced multi-stress resilience. Through systematic transcriptomic analysis of 100 wheat genotypes under heat, drought, cold, and salt stress, we identified 3237 differentially expressed genes (DEGs) enriched in key stress-response pathways. Core transcription factors (, , ) and two functional modules governing abiotic tolerance were characterized.

View Article and Find Full Text PDF

Analysis of physiological characteristics and gene co-expression networks in roots under low-temperature stress.

Front Plant Sci

August 2025

Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, Heilongjiang, China.

is the most widely cultivated high-protein forage crop globally. However, its cultivation in high-latitude and cold regions of China is significantly hindered by low-temperature stress, particularly impacting the root system, the primary functional tissue crucial for winter survival. The physiological and molecular mechanisms underlying the root system's adaptation and tolerance to low temperatures remain poorly understood.

View Article and Find Full Text PDF