Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Evolution of microbes under laboratory selection produces genetically diverse populations, owing to the continuous input of mutations and to competition among lineages. Whole-genome whole-population sequencing makes it possible to identify mutations arising in such populations, to use them to discern functional modules where adaptation occurs, and then map gene structure-function relationships. Here, we report on the use of this approach, adaptive genetics, to discover targets of selection and the mutational consequences thereof in E. coli evolving under chronic nutrient limitation.

Results: Replicate bacterial populations were cultured for ≥ 300 generations in glucose limited chemostats and sequenced every 50 generations at 1000X-coverage, enabling identification of mutations that rose to ≥ 1% frequency. Thirty-nine genes qualified as high value targets of selection, being mutated far more often than would be expected by chance. A majority of these encode regulatory proteins that control gene expression at the transcriptional (e.g., RpoS and OmpR), post-transcriptional (e.g., Hfq and ProQ), and post-translational (e.g., GatZ) levels. The downstream effects of these regulatory mutations likely impact not only acquisition and processing of limiting glucose, but also assembly of structural elements such as lipopolysaccharide, periplasmic glucans, and cell surface appendages such as flagella and fimbriae. Whether regulatory or structural in nature, recurrent mutations at high value targets tend to cluster at sites either known or predicted to be involved in RNA-protein or protein-protein interactions.

Conclusions: Our observations highlight the value of experimental evolution as a proving ground for inferences gathered from traditional molecular genetics. By coupling experimental evolution to whole-genome, whole-population sequencing, adaptive genetics makes it possible not only the genes whose mutation confers a selective advantage, but also to discover which residues in which genes are most likely to confer a particular type of selective advantage and why.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12366229PMC
http://dx.doi.org/10.1186/s12915-025-02331-7DOI Listing

Publication Analysis

Top Keywords

adaptive genetics
12
whole-genome whole-population
8
whole-population sequencing
8
targets selection
8
high targets
8
experimental evolution
8
selective advantage
8
mutations
5
genetics reveals
4
reveals constraints
4

Similar Publications

Background: Soil salinization represents a critical global challenge to agricultural productivity, profoundly impacting crop yields and threatening food security. Plant salt-responsive is complex and dynamic, making it challenging to fully elucidate salt tolerance mechanism and leading to gaps in our understanding of how plants adapt to and mitigate salt stress.

Results: Here, we conduct high-resolution time-series transcriptomic and metabolomic profiling of the extremely salt-tolerant maize inbred line, HLZY, and the salt-sensitive elite line, JI853.

View Article and Find Full Text PDF

To breed for climate resilient crops, an understanding of the genetic and environmental factors influencing adaptation is critical. Barley provides a model species to study adaptation to climate change. Here we present a detailed analysis of genetic variation at a major photoperiod response locus and relate this to the domestication history and dispersal of barley.

View Article and Find Full Text PDF

Endothelial cell-ILC3 crosstalk via the ET-1/EDNRA axis promotes NKp46ILC3 glycolysis to alleviate intestinal inflammation.

Cell Mol Immunol

September 2025

Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Gua

Communication between group 3 innate lymphoid cells (ILC3) and other immune cells, as well as intestinal epithelial cells, is pivotal in regulating intestinal inflammation. This study, for the first time, underscores the importance of crosstalk between intestinal endothelial cells (ECs) and ILC3. Our single-cell transcriptome analysis combined with protein expression detection revealed that ECs significantly increased the population of interleukin (IL)-22 ILC3 through interactions mediated by endothelin-1 (ET-1) and its receptor endothelin A receptor (EDNRA).

View Article and Find Full Text PDF

The rapid decline in global biodiversity highlights the urgent need for conservation efforts, with botanical gardens playing a crucial role in ex situ plant preservation. Monumental plants, such as the 400-year-old Goethe's Palm (Chamaerops humilis L.) at the Padua Botanical Garden serve as vital flagship species with significant ecological and cultural value.

View Article and Find Full Text PDF

ResDeepGS: A deep learning-based method for crop phenotype prediction.

Methods

September 2025

School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China; Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, Henan, China. Electronic address:

Genomic selection (GS) is a breeding technique that utilizes genomic markers to predict the genetic potential of crops and animals. This approach holds significant promise for accelerating the improvement of agronomic traits and addressing food security challenges. While traditional breeding methods based on statistical or machine learning techniques have been useful in predicting traits for some crops, they often fail to capture the complex interactions between genotypes and phenotypes.

View Article and Find Full Text PDF