Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

DNA replication stress is a hallmark of cancer that is exploited by chemotherapies. Current assays for replication stress have low throughput and poor resolution whilst being unable to map the movement of replication forks genome-wide. We present a new method that uses nanopore sequencing and artificial intelligence to map forks and measure their rates of movement and stalling in melanoma and colon cancer cells treated with chemotherapies. Our method can differentiate between fork slowing and fork stalling in cells treated with hydroxyurea, as well as inhibitors of ATR, WEE1, and PARP1. These different therapies yield different characteristic signatures of replication stress. We assess the role of the intra-S-phase checkpoint on fork slowing and stalling and show that replication stress dynamically changes over S-phase. Finally, we demonstrate that this method is applicable and consistent across two different flow cell chemistries (R9.4.1 and R10.4.1) from Oxford Nanopore Technologies. This method requires sequencing on only one nanopore flow cell per sample, and the cost-effectiveness enables functional screens to determine how human cancers respond to replication-targeted therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365011PMC
http://dx.doi.org/10.1038/s41467-025-63168-wDOI Listing

Publication Analysis

Top Keywords

replication stress
20
artificial intelligence
8
dna replication
8
cancer cells
8
cells treated
8
fork slowing
8
flow cell
8
replication
6
stress
5
high-resolution nanopore-based
4

Similar Publications

Environmental Stresses Constrain Soil Microbial Community Functions by Regulating Deterministic Assembly and Niche Width.

Mol Ecol

September 2025

State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Shaanxi, People's Republic of China.

Increasing evidence indicates that the loss of soil microbial α-diversity triggered by environmental stress negatively impacts microbial functions; however, the effects of microbial α-diversity on community functions under environmental stress are poorly understood. Here, we investigated the changes in bacterial and fungal α- diversity along gradients of five natural stressors (temperature, precipitation, plant diversity, soil organic C and pH) across 45 grasslands in China and evaluated their connection with microbial functional traits. By quantifying the five environmental stresses into an integrated stress index, we found that the bacterial and fungal α-diversity declined under high environmental stress across three soil layers (0-20 cm, 20-40 cm and 40-60 cm).

View Article and Find Full Text PDF

The bacterial DNA damage (SOS) response promotes DNA repair, DNA damage tolerance, and survival in the setting of genotoxic stress, including stress induced by antibiotics. In , translesion DNA synthesis can be fulfilled by Y-family DNA polymerases, including DNA polymerase IV (DinB). DinB features a more open active site and lacks proofreading ability, promoting error-prone replication.

View Article and Find Full Text PDF

Human factors are central to aviation safety, with pilot cognitive states such as workload, stress, and situation awareness playing important roles in flight performance and safety. Although flight simulators are widely used for training and scientific research, they often lack the ecological validity needed to replicate pilot cognitive states from real flights. To address these limitations, a new in-flight data collection methodology for general aviation using a Cessna 172 aircraft, which is one of the most widely used aircraft for pilot training, is presented.

View Article and Find Full Text PDF

Sectionally nonlinearly functionally graded (SNFG) structures with triply periodic minimal surface (TPMS) are considered ideal for bone implants because they closely replicate the hierarchical, anisotropic, and porous architecture of natural bone. The smooth gradient in material distribution allows for optimal load transfer, reduced stress shielding, and enhanced bone ingrowth, while TPMS provides high mechanical strength-to-weight ratio and interconnected porosity for vascularization and tissue integration. Wherein, The SNFG structure contains sections with thickness that varies nonlinearly along their length in different patterns.

View Article and Find Full Text PDF

Arterial thrombosis is a multifaceted process characterized by platelet aggregation and fibrin deposition, leading to the occlusion of blood vessels. It plays a central role in cardiovascular conditions such as myocardial infarction and ischemic stroke. Gaining insight into the mechanisms underlying arterial thrombosis is essential for developing effective treatments aimed at preventing thrombotic events and reducing associated health burdens.

View Article and Find Full Text PDF