Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The computational modeling of chromatin structure is highly complex due to the hierarchical organization of chromatin, which reflects its diverse biophysical principles, as well as inherent dynamism, which underlies its complexity. Chromatin structure modeling can be based on diverse approaches and assumptions, making it essential to determine how different methods influence the modeling outcomes. We conducted a project at the NIH-funded 4D Nucleome Hackathon on March 18-21, 2024, at The University of Washington in Seattle, USA. The hackathon provided an amazing opportunity to gather an international, multi-institutional and unbiased group of experts to discuss, understand and undertake the challenges of chromatin model comparison and validation. Here we give an overview of the current state of the 3D chromatin field and discuss our efforts to run and validate the models. We used distance matrices to represent chromatin models and we calculated Spearman correlation coefficients to estimate differences between models, as well as between models and experimental data. In addition, we discuss challenges in chromatin structure modeling that include: 1) different aspects of chromatin biophysics and scales complicate model comparisons, 2) large diversity of experimental data (e.g., population-based, single-cell, protein-specific) that differ in mathematical properties, heatmap smoothness, noise and resolutions complicates model validation, 3) expertise in biology, bioinformatics, and physics is necessary to conduct comprehensive research on chromatin structure, 4) bioinformatic software, which is often developed in academic settings, is characterized by insufficient support and documentation. We also emphasize the importance of establishing guidelines for software development and standardization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12380275PMC
http://dx.doi.org/10.1371/journal.pcbi.1013358DOI Listing

Publication Analysis

Top Keywords

chromatin structure
16
chromatin
9
chromatin model
8
model comparison
8
comparison validation
8
nucleome hackathon
8
structure modeling
8
challenges chromatin
8
experimental data
8
challenge chromatin
4

Similar Publications

Recent advances in single-cell bioinformatics for inferring higher-order chromatin contact maps.

BMB Rep

September 2025

Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.

DNA, a large molecule located in the nucleus, carries essential genetic information, including gene loci and cis-regulatory elements. Despite its extensive length, DNA is compactly stored within the limited space of the nucleus due to its hierarchical three-dimensional (3D) organization. In this structure, DNA is organized into territories known as topologically associated domains (TADs).

View Article and Find Full Text PDF

Downregulation of Nrf2 deteriorates cognitive impairment in APP/PS1 mice by inhibiting mitochondrial biogenesis through the PPARγ/PGC1α signaling pathway.

Behav Brain Res

September 2025

Department of neurology, Hebei Medical University Third Hospital, Hebei 050000,Shijiazhuang,China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei 050000,Shijiazhuang,China. Electronic address:

Background: Mitochondrial dysfunction is considered to be an important pathogenesis of cognitive impairment in Alzheimer's disease(AD). Activation of Nrf2 can improve cognitive impairment in AD mice, but the underlying mechanism remains to be elucidated. This research aims to investigate the intrinsic molecular mechanism of Nrf2 in mitochondrial biogenesis related to cognitive impairment of AD mice.

View Article and Find Full Text PDF

Glioblastoma (GBM) remains one of the most aggressive and lethal forms of brain cancer, characterised by profound genetic, epigenetic, and phenotypic heterogeneity. Recent advancements in high-resolution genome mapping have unveiled the critical role of three-dimensional (3D) chromatin architecture-encompassing chromatin loops, topologically associating domains, and enhancer-promoter interactions-in driving GBM tumourigenesis and therapy resistance. This review summarises recent insights into the mechanistic contribution of 3D genome reorganisation in sustaining oncogenic transcriptional programs, promoting intratumoural heterogeneity, and facilitating adaptive resistance.

View Article and Find Full Text PDF

Background: DNA G-quadruplexes (G4s) are non-canonical secondary structures formed in guanine-rich DNA sequences and play important roles in modulating biological processes through a variety of gene regulatory mechanisms. Emerging G4 profiling allows global mapping of endogenous G4 formation.

Results: Here in this study, we map the G4 landscapes in adult skeletal muscle stem cells (MuSCs), which are essential for injury-induced muscle regeneration.

View Article and Find Full Text PDF

The Hypoxia-Induced Chromatin Reader ZMYND8 Drives HIF-Dependent Metabolic Rewiring in Breast Cancer.

J Biol Chem

September 2025

Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India. Electronic address:

Breast cancer, a leading cause of mortality, exhibits significant heterogeneity across molecular subtypes, with tumor hypoxia contributing to poor therapeutic outcomes. The present study investigates the role of ZMYND8, a hypoxia-responsive epigenetic factor, in regulating carbohydrate metabolism in concert with HIF1α in breast cancer. In adherent cells as well as in 3D MCTS, ZMYND8 expression is elevated under hypoxic conditions.

View Article and Find Full Text PDF