Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
M1 macrophage polarization plays a key role in the onset and progression of sepsis. Fibroblast growth factor 15 (FGF15) suppresses septic inflammation through its FGF receptor 4 (FGFR4); however, the underlying mechanisms are largely unclear. In this study, we evaluated the anti-inflammatory effects of recombinant FGF15 (rFGF15) in cecal ligation and puncture (CLP)-induced septic mice in vivo, as well as lipopolysaccharide (LPS)-stimulated mouse bone marrow-derived macrophages (BMDMs) and RAW264.7 macrophages in vitro. We observed that rFGF15 suppressed M1 macrophage polarization and associated inflammatory responses in both CLP-induced septic mice and LPS-stimulated BMDMs and RAW264.7 macrophages. Additionally, macrophage-depleted CLP mice transplanted with LPS-stimulated BMDMs pre-treated with rFGF15 exhibited reduced multi-organ inflammation and enhanced survival compared to those receiving LPS-stimulated BMDMs without rFGF15 treatment. Mechanistically, FGF15 activated the neurofibromin 2 (NF2)-Hippo pathway through FGFR4, leading to the inhibition of glycolysis, lactate production, and histone H3K18 lactylation. This led to reduced expression of interferon regulatory factor 7 (Irf7), a key regulator of type I interferon responses. In conclusion, FGF15 suppresses M1 macrophage polarization and associated inflammatory responses in sepsis by activating the NF2-Hippo pathway, thereby inhibiting H3K18 lactylation-driven Irf7 expression. FGF15 holds promise as a potential innovative therapy for sepsis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361455 | PMC |
http://dx.doi.org/10.1038/s41419-025-07962-w | DOI Listing |