98%
921
2 minutes
20
Wall-associated receptor kinases (WAKs) and WAK-likes (WAKLs) play pivotal roles in regulating plant immunity, through multiple downstream signaling components. However, knowledge of WAKs/WAKLs in wheat immune responses to rust diseases remain limited. In this study, we identified and characterized a wheat WAKL, TaWAKL8-2B, which is upregulated during wheat resistance to both Puccinia striiformis f. sp. tritici (Pst) and Puccinia triticina (Ptt), indicating its role in wheat resistance to these two rust fungi. Transgenic wheat plants overexpressing TaWAKL8-2B exhibited enhanced resistance to stripe rust and leaf rust, accompanied by increased reactive oxygen species (ROS) production and up-regulated defense-related gene expression. Whereas, knockout TaWAKL8-2B reduced resistance to Pst and Ptt with less ROS accumulation, highlighting its positive role in wheat resistance. RNA-seq analysis revealed that 33 genes encoding ROS-scavenging enzymes were upregulated in TaWAKL8-2B-KO plants, explaining the reduced ROS. KEGG analysis enriched the monoterpenoid pathway, particularly the linalool biosynthesis pathway, with linalool synthases significantly downregulated in TaWAKL8-2B-KO plants. Correspondingly, linalool synthase content and linalool content decreased in knockout plants. Collectively, our findings uncover a novel mechanism by which TaWAKL8-2B positively modulates wheat rust resistance through modulating linalool biosynthesis and peroxidase activity. These results enhance our understanding of TaWAKL8-2B mediated immune signaling and offer a promising gene for improving wheat broad-spectrum resistance to rust diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361011 | PMC |
http://dx.doi.org/10.1007/s44154-025-00248-3 | DOI Listing |
Pestic Biochem Physiol
November 2025
College of Plant Protection, Hunan Agricultural University, Changsha 410128, China. Electronic address:
Shortawn foxtail (Alopecurus aequalis Sobol.) is a challenging weed species to manage in wheat production systems globally. In prior research, we identified a field population of A.
View Article and Find Full Text PDFJ Plant Physiol
September 2025
Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
Weeds are one of the major constraints for wheat productivity, causing significant yield losses worldwide. While chemical control is the most used practice to overcome weed damage, its efficacy is challenged by increasing weed resistance to most used herbicides, which is an expanding phenomenon caused by herbicide overuse/misuse. Modern wheat varieties are less able to perceive the presence of weeds than old varieties and are therefore less competitive against them and require chemical control to ensure adequate yields.
View Article and Find Full Text PDFMol Plant
September 2025
Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, USA. Electronic address:
The plant immune system relies on a precisely balanced interplay between activation and repression to effectively combat pathogens without incurring self-damage. The salicylic acid (SA) signaling pathway, a cornerstone of this system, is currently experiencing a research renaissance. Landmark studies have recently elucidated the complete enzymatic pathways for SA biosynthesis from both chorismate and phenylalanine (Liu et al.
View Article and Find Full Text PDFNat Plants
September 2025
The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, China.
Drought stress affects plant growth and agricultural production, especially in the context of global climate change. Post-drought rehydration is crucial for plant recovery and sustained growth, yet the mechanisms underlying this process remain poorly understood. Nitrogen fertilizer plays a role in optimizing plant growth and enhancing stress resistance, but its role in post-drought recovery has not been fully elucidated.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China. Electronic address:
Starch-tannic acid complex is a type of resistant starch, while the influence of these complexes with different starch chain-length distributions (CLDs) on gut microbiota is unclear. Therefore, starch-tannic acid complexes were prepared from five commercial starches with diverse CLDs, and their influence on the gut microbiota was explored using in vitro fermentation with human fecal microbiota. For the first time, results showed that wheat and corn starch-tannic acid complexes significantly promoted propionate production (p < 0.
View Article and Find Full Text PDF