98%
921
2 minutes
20
As a wide-band gap semiconductor, the formation of conductive layers on diamond surfaces is crucial for overcoming its insulating properties. Laser-induced doping has been demonstrated to be effective in generating low-resistance conductive layers on diamond. However, the underlying mechanism remains poorly understood. This study employs a multiscale characterization approach, including TOF-SIMS, Raman spectroscopy, AFM, and variable-temperature Hall measurements, to propose a novel mechanism for diamond surface conductivity, highlighting the synergistic interaction between defects and impurities. At the microscopic level, vacancies and interstitial atoms form diffusion channels for phosphorus; at the macroscopic scale, defect-induced localized states reduce the carrier activation energy to 0.0192 eV, facilitating hole conduction. Experiments demonstrate that 248 nm laser irradiation, with its higher photon energy, induces a denser defect network, significantly increasing phosphorus doping depth and concentration, resulting in a resistivity as low as 1.1 × 10 Ω·cm. This study systematically investigates the influence of laser parameters on the performance of conductive layers on diamond surfaces and proposes a novel laser-induced conduction mechanism, providing a solid foundation for the doping and conduction theoretical framework of ultrawide band gap semiconductors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12355320 | PMC |
http://dx.doi.org/10.1021/acsomega.5c05740 | DOI Listing |
Discov Nano
September 2025
Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China.
A cost-effective and large-scale method for synthesizing ZnCoO nanoflowers with surface oxygen vacancies as electrode materials for supercapacitors is presented. The existence of oxygen vacancies on the surface of the ZnCoO nanoflowers has been confirmed through X-ray photoelectron spectroscopy (XPS). The energy bands and density of states (DOS) of ZnCoO are examined using density functional theory, revealing that treatment with NaBH reduces the band gap of ZnCoO while increasing the DOS near the Fermi level compared to pristine ZnCoO.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
Radiochemistry Unit, Department of Chemistry, The University of Helsinki, Helsinki 00560, Finland. Electronic address:
Uranium dioxide (UO) particles can be released from mines, nuclear fuel manufacturing, reactor accidents, and weapons use. They pose inhalation risks, yet their behavior in the human lung remains poorly understood. This study investigates the long-term chemical alteration and dissolution of µm-sized UO particles in two model lung fluids: Simulated Lung Fluid (SLF) and Artificial Lysosomal Fluid (ALF), representing extracellular and intracellular lung environments, respectively.
View Article and Find Full Text PDFNat Commun
September 2025
Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, China.
Fluorescent carbon dots (CDs) have garnered significant attention for their unique optoelectronic properties and applications, but their practical employment is hampered by the excessive synthesis temperature, tedious post-processing and limited solid-state luminescence efficiency. Herein, we develop a facile molten salt method to achieve the one-step synthesis of full-color CDs with efficient solid-state emission. Comprehensively, kilogram-scale solid-state CDs with a quantum yield of 90% can be readily synthesized via a salt-assisted approach under mild conditions (100-142 °C) within 10 min.
View Article and Find Full Text PDFNat Commun
August 2025
The State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Xi'an, China.
The self-heating effect in wide bandgap semiconductor devices makes epitaxial GaO on diamond substrates crucial for thermal management. However, the lack of wafer-scale single-crystal diamond and severe lattice mismatch limit its industrial application. This study presents van der Waals β-GaO (VdW-β-GaO) grown on high-thermal-conductivity polycrystalline diamond.
View Article and Find Full Text PDFMicromachines (Basel)
August 2025
College of Engineering, Design and Physical Sciences, Brunel University London, London UB8 3PH, UK.
At present, there are some challenging issues for diamond electroplating devices, such as poor particle-cathode contact uniformity, low conductivity, inefficient deposition, and complex disassembly/cleaning process of the device. To overcome these issues, an ultrasonic oscillation-assisted nickel electroplating device is innovatively designed and presented in this paper. The device features: (1) innovative architecture enabling rapid disassembly; (2) ultrasonic enhancement of diamond particle mobility (frequency × amplitude); (3) optimized electrical contact interfaces.
View Article and Find Full Text PDF