Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Water transport across biological membranes is essential for life, facilitated by water channel proteins like aquaporins (AQPs). Drawing inspiration from these natural systems, artificial water channels (AWCs) have emerged as transformative tools for advancing industrial and environmental applications. Herein, we report the design and comprehensive characterization of a groundbreaking class of AWCs, derived from unprecedented butterfly-shaped aromatic folding synthons, carefully engineered to emulate the functional attributes of natural AQPs. These foldamers, with their intricate helical architectures, exhibit exceptional water transport performance. Remarkably, the highest-performing AWC achieves an ultrafast water transport rate of 2.6 × 10 HO s per channel-2.4 times the efficiency of AQP1-without the need for lipid anchors to preserve its functional orientation within phospholipid bilayers, while effectively excluding salts such as NaCl and KCl, along with protons. This work presents an ideal bio-inspired, high-performance artificial alternative to natural systems, demonstrating the remarkable potential of foldamer-based AWCs as next-generation solutions for tackling critical challenges in water purification and desalination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202506341 | DOI Listing |