Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the context of global economic transformation, high-quality enterprise development (HQED) is crucial for driving economic growth, particularly through enhancing Total Factor Productivity (TFPLP). Digital Inclusive Finance (DIF), as a classical financial model, plays an important role in promoting high-quality enterprise development. To explore the relationship between TFP and DIF, we first applied traditional double fixed-effects models, along with robustness and heterogeneity tests, for modeling experiments. This series of tests effectively revealed the theoretical linear relationships between economic variables. However, the double fixed-effects model has limitations in capturing nonlinear relationships and making predictions. Given the growing body of research on existing hybrid models, we acknowledge the importance of exploring and contributing to this evolving area. To address this issue, based on the results of traditional economic analysis, we introduced improved time series models. These advanced deep learning models allow us to better capture the complex nonlinear relationship between DIF and TFP. The experiment initially explored the preliminary structural relationship between DIF and TFP using double fixed-effects models combined with robustness and heterogeneity tests. Then, based on the results of these tests, we selected deep learning features and combined Kolmogorov-Arnold Neural Network (KAN), Graph Neural Network (GNN) models with classic time series deep learning models (Transformer, LSTM, BiLSTM, GRU) to capture the latent nonlinear features in the data for prediction. The results show that, compared to traditional time series forecasting methods, the improved deep learning models perform better in capturing the nonlinear relationships of economic variables, improving prediction accuracy, and reducing prediction errors. Finally, paired t-tests and Cohen's d effect size tests were used to evaluate error metrics, and the results indicate that the introduction of KAN and GNN models significantly improved the performance of time series forecasting models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12358526PMC
http://dx.doi.org/10.1038/s41598-025-14610-yDOI Listing

Publication Analysis

Top Keywords

deep learning
20
time series
16
enterprise development
12
double fixed-effects
12
learning models
12
models
10
digital inclusive
8
high-quality enterprise
8
fixed-effects models
8
robustness heterogeneity
8

Similar Publications

Aims And Objective: The field of medical statistics has experienced significant advancements driven by integrating innovative statistical methodologies. This study aims to conduct a comprehensive analysis to explore current trends, influential research areas, and future directions in medical statistics.

Methods: This paper maps the evolution of statistical methods used in medical research based on 4,919 relevant publications retrieved from the Web of Science.

View Article and Find Full Text PDF

Artificial Intelligence in Contact Dermatitis: Current and Future Perspectives.

Dermatitis

September 2025

From the Department of Dermatology, Venereology and Leprology, All India Institute of Medical Sciences (AIIMS), Bhopal, India.

Contact dermatitis (CD), which includes both allergic CD and irritant CD, is a common inflammatory condition that can pose significant diagnostic challenges. Although patch testing is the gold standard for identifying causative allergens for allergic contact dermatitis (ACD), it is time-consuming, subjective, and requires expert interpretation. Recent advancements in artificial intelligence (AI), particularly in machine learning (ML) and deep learning, have shown promise in improving the accuracy, efficiency, and accessibility of CD diagnosis and management.

View Article and Find Full Text PDF

Subject-independent emotion detection using EEG (Electroencephalography) using Vibrational Mode Decomposition and deep learning is made possible by the scarcity of labelled EEG datasets encompassing a variety of emotions. Labelled EEG data collection over a wide range of emotional states from a broad and varied population is challenging and resource-intensive. As a result, models trained on small or biased datasets may fail to generalize well to unknown individuals or emotional states, resulting in lower accuracy and robustness in real-world applications.

View Article and Find Full Text PDF

Objectives: We propose a myocardial infarction (MI) detection and localization model for improving the diagnostic accuracy for MI to provide assistance to clinical decision-making.

Methods: The proposed model was constructed based on multi-scale field residual blocks fusion modified channel attention (MSF-RB-MCA). The model utilizes lead II electrocardiogram (ECG) signals to detect and localize MI, and extracts different levels of feature information through the multi-scale field residual block.

View Article and Find Full Text PDF

Large language models (LLMs) represent a transformative advance in artificial intelligence, with growing potential to impact chronic kidney disease (CKD) management. CKD is a complex, highly prevalent condition requiring multifaceted care and substantial patient engagement. Recent developments in LLMs-including conversational AI, multimodal integration, and autonomous agents-offer novel opportunities to enhance patient education, streamline clinical documentation, and support decision-making across nephrology practice.

View Article and Find Full Text PDF