CRISPR/Cas system targeting RNA and its derivative technology.

Yi Chuan

College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

RNA editing is one of the important research directions in the field of epigenetics. With further research, scientists have discovered that the CRISPR/Cas system can target not only DNA but also RNA, thereby achieving precise gene editing at the transcriptional level. Moreover, using the CRISPR/Cas system for RNA editing can also avoid damage to genome. At present, a variety of derivative technologies based on RNA-targeting CRISPR systems have been developed, including RNA knockdown and editing, nucleic acid detection and imaging, and RNA tracking. The emergence of these derivative technologies provides powerful tools for deciphering biological genetic mechanisms and disease treatment. In this review, we summarize the structure, function, mechanisms, and derived technologies of RNA-targeting CRISPR/Cas systems, aiming to enrich people's understanding of CRISPR/Cas-mediated RNA editing.

Download full-text PDF

Source
http://dx.doi.org/10.16288/j.yczz.24-311DOI Listing

Publication Analysis

Top Keywords

crispr/cas system
12
rna editing
12
derivative technologies
8
rna
7
editing
5
crispr/cas
4
system targeting
4
targeting rna
4
rna derivative
4
derivative technology
4

Similar Publications

Plasmids are commonly employed in the delivery of clustered regularly interspaced shortpalindromic repeats (CRISPR)/CRISPR-associated (Cas) components for genome editing. However, the absence of heritable plasmids in numerous organisms limits the development of CRISPR/Cas genome editing tools. Moreover, cumbersome procedures for plasmid construction and curing render genome editing time-consuming.

View Article and Find Full Text PDF

[Harnessing retroviral engineering for genome reprogramming].

Med Sci (Paris)

September 2025

CIRI, Centre international de recherche en infectiologie Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France.

The accumulated knowledge on the biology of the HIV-1 virus has led to the emergence of technologies that exploit the architecture of retroviruses and their integration or vectorization properties. This field of study constitutes retroviral vectorology, democratized in laboratories by the use of lentiviral vectors. By hijacking retroviral assembly, other systems are emerging and are increasingly mentioned in recent literature.

View Article and Find Full Text PDF

Improved protocol for the vitrification and warming of rat zygotes by optimizing the warming solution and oocyte donor age.

PLoS One

September 2025

Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan.

Zygotes are used to create genetically modified animals by electroporation using the CRISPR-Cas9 system. Such zygotes in rats are obtained from superovulated female rats after mating. Recently, we reported that in vivo-fertilized zygotes had higher cryotolerance and developmental ability than in vitro-fertilized zygotes in Sprague Dawley (SD) and Fischer 344 rats.

View Article and Find Full Text PDF

T-cell therapies have proven to be a promising treatment option for cancer patients in recent years, especially in the case of chimeric antigen receptor (CAR)-T cell therapy. However, the therapy is associated with insufficient activation of T cells or poor persistence in the patient's body, which leads to incomplete elimination of cancer cells, recurrence, and genotoxicity. By extracting the splice element of PD-1 pre-mRNA using biology based on CRISPR/dCas13 in this study, our ultimate goal is to overcome the above-mentioned challenges in the future.

View Article and Find Full Text PDF

is a commensal bacterium that colonizes the gut of humans and animals and is a major opportunistic pathogen, known for causing multidrug-resistant healthcare-associated infections (HAIs). Its ability to thrive in diverse environments and disseminate antimicrobial resistance genes (ARGs) across ecological niches highlights the importance of understanding its ecological, evolutionary, and epidemiological dynamics. The CRISPR2 locus has been used as a valuable marker for assessing clonality and phylogenetic relationships in .

View Article and Find Full Text PDF