98%
921
2 minutes
20
Perfluorocarboxylic acids (PFCAs) are emerging organic pollutants posing a threat to human health and the environment. This study investigates the efficacy of polyethyleneimine-modified biochar (BC-PEI) as an adsorbent for removing PFCAs from a mixed solute system, focusing on competitive adsorption among PFCAs with varying chain lengths. It includes perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA), hexafluoropropylene-oxide-dimer-acid (GenX), and perfluorobutanoic acid (PFBA). BC-PEI (1:1) (w/w = 1) exhibited the highest adsorption capacities for PFOA, PFHxA, GenX, and PFBA at 1.302, 0.850, 0.711, and 0.397 mmol/g, respectively. It follows the Sips isotherm (Langmuir-Freundlich isotherm) model, which becomes Langmuir at high concentration and Freundlich at low concentration. Surface functional groups, as well as electrostatic and hydrophobic interactions, influenced the adsorption mechanism. Long-chain PFCAs demonstrated higher adsorption capacities due to stronger hydrophobic interactions, while short-chain PFCAs were primarily adsorbed via electrostatic interactions. Kinetics data were best described by the pseudo-second-order (PSO) model, with surface adsorption and minor micropore contributions governing the process. The presence of humic acid reduced the adsorption capacity by competing for adsorption sites. The background ions in the aqueous matrix further diminished capacity due to double-layer compression. Fourier-transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) confirmed PFCAs adsorption onto BC-PEI. These findings underscore the potential of BC-PEI as a promising adsorbent for PFCA remediation in wastewater systems, highlighting its engineering applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2025.144650 | DOI Listing |
Mikrochim Acta
September 2025
Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.
We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, Northwest Normal University, Lanzhou, 730070, China.
An electrochemical sensor based on MXene/PANI/SnO nanomaterials was developed for the detection of 4-aminophenol (4-AP). In situ oxidative growth of PANI on the MXene surface effectively hindered the stacking of the lamellae and increased the specific surface area of the composites. Further complexation of tin dioxide with swelling properties of the structure provided adsorption and catalytic sites for 4-AP.
View Article and Find Full Text PDFInt J Phytoremediation
September 2025
Department of Fashion and Textile Design, College of Arts and Design, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
In this paper, lignin was chemically extracted from fibers and modified with branched polyethyleneimine (BPEI) and the resulting samples were applied for the adsorption of two anionic dyes; Acid red 183 (AR183) and Acid blue 25 (AB25) from aqueous suspension. Analytical characterization methods including SEM, FT-IR, TGA/DTG, and XRD were used to analyze the studied samples. The images of the extracted lignin displayed a rough feature.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, School of Chemical Engineering & Technology, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
Separation of ethanol-water azeotrope is extremely challenging. Here, we design and synthesize a new sulfate-pillared metal triazolate framework, which shows sieving-like separation of water/ethanol. A dynamic breakthrough verified the ultrahigh selectivity (145), and it could produce a record-breaking ethanol productivity (3.
View Article and Find Full Text PDFLangmuir
September 2025
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, PR China.
Hard carbon (HC) has emerged as a promising anode material for sodium-ion batteries (SIBs) owing to its superior sodium storage performance. However, the high cost of conventional HC precursors remains a critical challenge. To address this, coal─a low-cost, carbon-rich precursor─has been explored for HC synthesis.
View Article and Find Full Text PDF