98%
921
2 minutes
20
Tandem catalysis is an effective approach to achieve highly selective and high-rate multi-electron/proton transfer reactions, such as nitrate electroreduction, which are important for various physicochemical and biological processes. However, present tandem catalysts suffer from uncontrollable interface, limited crystal phase, and complex synthesis protocols. Here, we report facile seed-mediated synthesis of unconventional phase 4H/fcc Au-Cu heterostructures with a unique beaded-bracelet nanostructure (BBN). Importantly, the exposed Au/Cu interface density can be continuously tuned by modulating discrete Cu domain density on Au nanowires. As a proof-of-concept application, 4H/fcc Au-Cu BBN demonstrates high catalytic performance in nitrate electroreduction to ammonia, with a yield rate and partial current density of 116.2 mg h cm and 1652.0 mA cm, respectively. In-situ and theoretical investigations suggest that the unconventional 4H phase and tandem catalysis between Au and Cu domains account for the superior electrocatalytic performance. Besides, this method can be extended to synthesize other unconventional phase heteronanostructures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12357875 | PMC |
http://dx.doi.org/10.1038/s41467-025-63013-0 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305.
The iron-based high-[Formula: see text] superconductors (SCs) exhibit rich phase diagrams with intertwined phases, including magnetism, nematicity, and superconductivity. The superconducting [Formula: see text] in many of these materials is maximized in the regime of strong nematic fluctuations, making the role of nematicity in influencing the superconductivity a topic of intense research. Here, we use the AC elastocaloric effect (ECE) to map out the phase diagram of Ba(FeCo)As near optimal doping.
View Article and Find Full Text PDFNat Commun
September 2025
Institute for Theoretical Physics, University of Regensburg, Regensburg, Germany.
The nature of the dominant pairing mechanism in some two-dimensional transition metal dichalcogenides is still debated. Focusing on monolayer 1H-NbSe, we show that superconductivity can be induced by the Coulomb interaction when accounting for screening effects on the trigonal lattice with multiple orbitals. Using ab initio based tight-binding parametrizations for the relevant low-energy d-bands, we evaluate the screened interaction microscopically.
View Article and Find Full Text PDFLangmuir
September 2025
Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, U.K.
This study examines how proteinoids and myelin interact in biomimetic neural systems. These interactions reveal electrochemical properties and computing capabilities. Proteinoids are made when amino acids heat up and bond together.
View Article and Find Full Text PDFSci Adv
September 2025
Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
Topological superconductors are one of the intriguing material groups from the viewpoint of not only condensed matter physics but also industrial applications such as quantum computers based on Majorana fermion. For real applications, developments of thin-film topological superconductors are highly desirable. Bi/Ni bilayer is a possible candidate for thin-film chiral superconductors where the time-reversal symmetry is broken.
View Article and Find Full Text PDFNano Lett
September 2025
Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States.
Moiré superlattices introduce new length and energy scales, enabling discoveries, such as unconventional superconductivity, in 2D systems. This concept has recently been extended to bulk materials with multiple- spin textures, opening exciting opportunities for spin moiré physics. A notable example is EuAgSb, where a spin moiré superlattice (SMS), manifested as a double- spin modulation, induces a superzone gap opening.
View Article and Find Full Text PDF