98%
921
2 minutes
20
Quantum dot light-emitting diodes show great potential for next-generation displays. Although film quantum dot light-emitting diodes have achieved or approached efficiency and stability standards for commercial applications, patterned quantum dot light-emitting diodes, particularly blue quantum dot light-emitting diodes, still face challenges in both efficiency and stability. Traditional patterning methods often lead to defects and disorder, causing non-radiative recombination and reduced performance. Here, we develop an aromatic-enhanced capillary bridge confinement strategy to achieve long-range ordered blue quantum dot microstructure arrays. These quantum dot arrays integrate into quantum dot light-emitting diodes achieve a peak external quantum efficiency of 24.1% and a peak luminance of 101,519 cd m. Additionally, the minimum pixel size is reduced to 3 μm, enabling a maximum resolution exceeding 5000 pixels per inch, and static electroluminescence display modes. This study provides a strategy to advance the commercialization of quantum dot light-emitting diodes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12357929 | PMC |
http://dx.doi.org/10.1038/s41467-025-62345-1 | DOI Listing |
Phys Rev Lett
August 2025
University of Maryland Baltimore County, Department of Physics, Baltimore, Maryland 21250, USA.
A charge qubit couples to environmental electric field fluctuations through its dipole moment, resulting in fast decoherence. We propose the p-orbital (pO) qubit, formed by the single-electron, p-like valence states of a five-electron Si quantum dot, which couples to charge noise through the quadrupole moment. We demonstrate that the pO qubit offers distinct advantages in quality factor, gate speed, readout, and size.
View Article and Find Full Text PDFJ Fluoresc
September 2025
Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, 81441, Ha'il, Saudi Arabia.
This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.
View Article and Find Full Text PDFNanoscale
September 2025
Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, People's Republic of China.
The rational design of non-precious metal catalysts as a replacement for Pd is of great importance for catalyzing various important chemical reactions. To realize this purpose, the palladium-like superatom NbN was doped into a defective graphene quantum dot (GQD) model with a double-vacancy site to design a novel single superatom catalyst, namely, NbN@GQD, based on density functional theory (DFT), and its catalytic activity for the Suzuki reaction was theoretically investigated. Our results reveal that this designed catalyst exhibits satisfactory activity with a small rate-limiting energy barrier of 25.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China.
Inverted quantum dot light-emitting diodes (QLEDs) show great promise for next-generation displays due to their compatibility with integrated circuit architectures. However, their development has been hindered by inefficient exciton utilization and charge transport imbalance. Here, we present a strategy for regulating charge-exciton dynamics through the rational design of a multifunctional hole transport layer (HTL), incorporating polyethylenimine ethoxylated (PEIE) as a protective interlayer in fully-solution-processed inverted red QLEDs.
View Article and Find Full Text PDFSmall
September 2025
Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069, Dresden, Germany.
III-V semiconductor nanocrystals (NCs) have emerged as a benign alternative to II-VI and IV-VI NCs, which are restricted due to the toxicity of the comprising elements. While InP NCs advanced significantly, the development of infrared-emitting InAs NCs has been relatively slow-paced. This is due to the synthetic challenges arising from the highly covalent bonding in InAs and the limited range of available arsenic sources.
View Article and Find Full Text PDF