Dual-Mode Method for the Sensitive Detection of β-Secretase (BACE1) Based on Surface-Enhanced Raman Scattering and Dark-Field Microscopy.

Anal Chem

Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, P. R. China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

β-Secretase (BACE1), a key enzyme to producing neurotoxic β-amyloid, is a potential biomarker of Alzheimer's disease (AD). Developing a sensitive and efficient detection method for BACE1 activity is significant for AD progression evaluation. Due to the poor cleavage efficiency and acidic working conditions of BACE1, developing probes with high stability and strong signals is challenging for its detection. This work proposed a dual-mode BACE1 detection method based on surface-enhanced Raman scattering and dark-field microscopy. 4-Mercaptobenzoic acid (4-MBA), as the internal Raman reporter of Au@Ag nanoparticles (NPs), shows stable and enhanced Raman signals in an acidic environment. The plasmonic Au@Ag-FeO NPs are prepared by assembling Au@Ag NPs on the surface of FeO NPs with the assistance of the BACE1 substrate peptides, which aggregate the Raman signals on the surface of FeO NPs. The presence of BACE1 cleaves its substrate peptides, releasing Au@Ag NPs from FeO NPs. As a result, the Raman intensity of 4-MBA significantly decreased, and the characteristic localized surface plasmon resonance (LSPR) scattering of Au@Ag-FeO NPs changed obviously. Thus, a dual-mode sensor based on Raman and LSPR was constructed to detect BACE1. The linear range and detection limit were superior to those of previously reported strategies. The innovative Au@Ag-FeO NPs present remarkable application potential for detecting BACE1.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.5c02512DOI Listing

Publication Analysis

Top Keywords

au@ag-feo nps
12
feo nps
12
bace1
9
nps
9
β-secretase bace1
8
based surface-enhanced
8
surface-enhanced raman
8
raman scattering
8
scattering dark-field
8
dark-field microscopy
8

Similar Publications

The increasing use of engineered nanoparticles (NPs) in consumer and biomedical products has raised concern over their potential accumulation, transformation, and toxicity in biological systems. Accurate analytical methods are essential to detect, characterize, and quantify NPs in complex biological matrices. Inductively coupled plasma mass spectrometry (ICP-MS) has emerged as a leading technique due to its high sensitivity, elemental selectivity, and quantitative capabilities.

View Article and Find Full Text PDF

Investigation into the Regulation of Ag NPs/ZnO NRs/GaN Heterostructure SERS Substrate via Pyroelectric Effects.

J Phys Chem Lett

September 2025

Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China.

Heterostructures have emerged as promising contenders for surface-enhanced Raman scattering (SERS) applications. Nevertheless, the construction of a composite SERS substrate with well-matched energy levels persists as a challenge, primarily due to the restricted selection of SERS-active materials. In this study, we successfully synthesized a Ag nanoparticles (NPs)/ZnO nanorods (NRs)/GaN heterojunction featuring type II staggered energy bands, which provides an outstanding platform for efficient SERS detection.

View Article and Find Full Text PDF

Porous SiO/ZnO-carboxymethyl cellulose composite hydrogels for enhanced hemostatic efficacy and antibacterial activity.

Int J Biol Macromol

September 2025

School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China. Electronic address:

The development of effective hemostatic and antibacterial dressings remains a critical challenge in wound management. We report the design and fabrication of novel porous composite hydrogels composed of carboxymethyl cellulose (CMC), silica (SiO), and zinc oxide nanoparticles (ZnO NPs) . The incorporation of SiO and ZnO NPs into the CMC hydrogel matrix resulted in a unique multi-scale porous structure, characterized by interconnected holes of various sizes, which significantly enhanced the hydrogel's liquid absorption capacity and mechanical strength.

View Article and Find Full Text PDF

Engineered plasmonic copper (II) sulfide-wrapped polystyrene nanoparticles for spectroscopic detection of mercury ions.

J Hazard Mater

September 2025

Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. Electronic address:

We report a novel and highly effective UV-Vis sensing platform based on plasmonic copper (II) sulfide-capsulated polystyrene nanoparticles (PS@CuS NPs) for the rapid, ultrasensitive, and selective detection of Hg . The detection mechanism is driven by a specific anion-exchange reaction between Hg and CuS, resulting in the in-situ transformation of plasmonic CuS into non-plasmonic HgS, which induces a distinct and quantifiable shift in UV-Vis absorption. This structural and optical evolution enables the platform to achieve an exceptionally low detection limit of 20 pM within just 5 min, far below most regulatory thresholds, and a wide linear detection range from 20 pM to 30 nM.

View Article and Find Full Text PDF

Metformin attenuates coal dust nanoparticle-induced pulmonary fibrosis by modulating inflammation and epithelial-mesenchymal transition.

Int Immunopharmacol

September 2025

The First Hospital of Anhui University of Science and Technology, Huainan 232000, China; Bengbu Medical University, Bengbu 233030, China. Electronic address:

Coal worker pneumoconiosis is an occupational pulmonary fibrosis (PF) caused by prolonged exposure to respirable coal dust (CD), with limited therapeutic options. Here, we explored the antifibrotic effects of metformin (Met) in CD-nanoparticle (CD-NP)-induced PF, focusing on its preventive and therapeutic potential. In vivo, Met was administered at different doses (low: 31.

View Article and Find Full Text PDF