A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Transparent artificial intelligence-enabled interpretable and interactive sleep apnea assessment across flexible monitoring scenarios. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Early detection of widespread undiagnosed sleep apnea is crucial for preventing its severe health complications. However, large-scale diagnosis faces inaccessible monitoring and trust barriers in automated analysis, particularly due to the absence of transparent artificial intelligence frameworks capable of monitoring adaptation. Here, we develop Apnea Interact Xplainer, a transparent system enabling sleep apnea diagnosis through flexible channel analysis across clinical and home settings. Analyzing 15,807 polysomnography recordings from seven independent multi-ethnic cohorts, our system achieves accuracies of 0.738-0.810 for four-level severity classification, with 99.8% accuracy within one severity grade and R-squared of 0.92-0.96 for apnea-hypopnea index prediction on external test cohorts. The system provides multi-level expert-logic interpretable visualization of respiratory patterns enabling transparent collaborative decision-making. Notably, it achieves a sensitivity of 0.970 for early sleep apnea detection using only oximetry signals, while providing nightly risk assessment and intelligent monitoring reports. This study establishes a paradigm shift in advancing early and cost-effective sleep apnea diagnosis through transparent artificial intelligence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12354915PMC
http://dx.doi.org/10.1038/s41467-025-62864-xDOI Listing

Publication Analysis

Top Keywords

sleep apnea
20
transparent artificial
12
artificial intelligence
8
apnea diagnosis
8
cohorts system
8
apnea
6
transparent
5
sleep
5
artificial intelligence-enabled
4
intelligence-enabled interpretable
4

Similar Publications