Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cytidine to uridine (C-to-U) as well as adenosine to inosine (A-to-I) RNA editing denotes the posttranscriptional modification of RNA by specialized RNA deaminases. As RNA editing alters the sequence of the RNA, it can affect splicing, stability, miRNA binding and may also lead to recoding of the translated protein. Recently, we analysed recoding A-to-I RNA editing in chronic lymphocytic leukaemia (CLL) and could define prognostically relevant editing patterns. However, disease relevant C-to-U RNA editing in CLL remained unexplored. In this study, we examined C-to-U RNA editing in CLL and discovered a recoding RNA editing site within the MFN1 gene (hg38; chr3:179,375,230), which has recently been described as RNA editing site in brain samples. We found that MFN1 editing was not only present in CLL samples but also in naive B cell subsets, primarily occurred at unspliced RNA and correlated with intron retention. We further identified catalytically active ADARB1 as an essential regulator for MFN1 editing. Finally, MFN1 editing correlated with prolonged time to treatment and overall survival in CLL patients. Summarizing, we identified a novel ADARB1 function as C to U editing regulator, which regulates MFN1 splicing and MFN1 S329L recoding with pathogenic relevance in CLL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12354836PMC
http://dx.doi.org/10.1038/s41598-025-15666-6DOI Listing

Publication Analysis

Top Keywords

rna editing
32
rna
12
editing
12
editing cll
12
mfn1 editing
12
chronic lymphocytic
8
a-to-i rna
8
c-to-u rna
8
editing site
8
mfn1
7

Similar Publications

CRISPR RNP-Mediated Transgene-Free Genome Editing in Plants: Advances, Challenges and Future Directions for Tree Species.

Plant Cell Environ

September 2025

State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry

CRISPR ribonucleoprotein (RNP)-mediated genome editing offers a transgene-free platform for precise genetic modification in diverse herbaceous and tree species, including rice, wheat, apple, poplar, oil palm, rubber tree and grapevine. However, its application in woody plants faces distinct challenges, notably inefficient delivery and regeneration difficulties, particularly in species such as bamboo. While some of these issues also occur in herbaceous plants, they are often significantly more complex in woody species due to factors such as intricate cell wall architecture, widespread recalcitrant genotypes and inherent limitations of current delivery platforms.

View Article and Find Full Text PDF

Plasmids are commonly employed in the delivery of clustered regularly interspaced shortpalindromic repeats (CRISPR)/CRISPR-associated (Cas) components for genome editing. However, the absence of heritable plasmids in numerous organisms limits the development of CRISPR/Cas genome editing tools. Moreover, cumbersome procedures for plasmid construction and curing render genome editing time-consuming.

View Article and Find Full Text PDF

T-cell therapies have proven to be a promising treatment option for cancer patients in recent years, especially in the case of chimeric antigen receptor (CAR)-T cell therapy. However, the therapy is associated with insufficient activation of T cells or poor persistence in the patient's body, which leads to incomplete elimination of cancer cells, recurrence, and genotoxicity. By extracting the splice element of PD-1 pre-mRNA using biology based on CRISPR/dCas13 in this study, our ultimate goal is to overcome the above-mentioned challenges in the future.

View Article and Find Full Text PDF

Mutations in the human ADAR gene encoding adenosine deaminase acting on RNA 1 (ADAR1) cause Aicardi-Goutières syndrome 6 (AGS6); a severe auto-inflammatory encephalopathy with aberrant interferon (IFN) induction. AdarΔ2-13 null mutant mouse embryos lacking ADAR1 protein die with high levels of IFN-stimulated gene (ISG) transcripts. In Adar Mavs double mutants also lacking the Mitochondrial antiviral signaling (MAVS) adaptor, the aberrant IFN induction is prevented.

View Article and Find Full Text PDF

Epitranscriptomic modifications regulate gene expression and have been implicated in cancer, including breast cancer. Using the SCAN-B cohort, we analyzed 49 messenger RNA modification regulators (mRMPs) across breast cancer subtypes. In the basal subtype, we found significant overexpression of mA readers (IGF2BP1-3), mC regulators (NSUN5, ALYREF, YBX1, YBX2), pseudouridine [PUS1, MARS (or MetRS), RPUSD2], and RNA editing enzymes [APOBEC3A (A3A), A3G, ADAR1], all linked to poor survival.

View Article and Find Full Text PDF